Electronic supplementary Information

Synthesis of tartrate - bridging rare - earth - containing

polytungstoarsenate aggregates from an adaptive precursor

$[As_2W_{19}O_{67}(H_2O)]^{14-}$

Yuan Wang,^{*a*} Xiaopeng Sun,^{*a*} Suzhi Li,^{*b*} Pengtao Ma,^{*a*} Jingping Wang,^{*,*a*} Jingyang Niu^{*,*a*}

^{*a*} Henan Key Laboratory of Polyoxometalate, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China. E-mail: jywang@henu.edu.cn, jyniu@henu.edu.cn, Fax: (+86) 37123886876.

^b College of Chemistry and Chemical Engineering, Engineering Research Center of Functional Material Preparation, Shangqiu Normal University, Shangqiu, 476000, Henan, China

Figure S1 The X-ray powder diffraction patterns of 1-6

Figure S2 IR spectra of 1–6.

Figure S3 The UV–vis spectra of 1-6 with 5×10^{-5} mol/L in aqueous solution.

Figure S4 The UV–vis spectra of 3 at different pH values.

Figure S5 The χ_M^{-1} *vs T* curves of **1**(a), **2**(b), **3**(c), **4**(d).

Figure S1. The X-ray powder diffraction patterns of 1(a), 2(b), 3(c), 4(d), 5(e), 6(f), and their calculated patterns based on the single–crystal solution.

Figure S3. The UV–vis spectra of 1(a), 2(b), 3(c), 4(d), 5(e), 6(f) with 5×10⁻⁵ mol/L in aqueous solution.

 $\chi_{M}^{-1/mol\ emu^{-1}}$

T/K

_Σ₁₀

T / K

-1/mol emu⁻¹

Bond	Bond lengths (Å)	The average
(RE-O)		bond lengths (Å)
Ho(1)-O(4)	2.219	2.365
Ho(1)-O(43)#3	2.282	
Ho(1)-O(44)#3	2.328	
Ho(1)-O(37)#3	2.348	
Ho(1)-O(36)	2.365	
Ho(1)-O(37)	2.407	
Ho(1)-O(33)	2.412	
Ho(1)-O(34)	2.453	
Ho(2)-O(38)#3	2.271	
Ho(2)-O(31)	2.303	
Ho(2)-O(34)	2.333	
Ho(2)-O(43)	2.345	
Ho(2)-O(40)	2.349	
Ho(2)-O(37)#3	2.464	
Ho(2)-O(42)	2.476	
Ho(2)-O(33)	2.494	
Er(1)-O(4)	2.209	2.351
Er(1)-O(43)#3	2.257	
Er(1)-O(44)#3	2.309	
Er(1)-O(37)#3	2.341	
Er(1)-O(36)	2.388	
Er(1)-O(37)	2.393	
Er(1)-O(33)	2.402	
Er(1)-O(34)	2.44	
Er(2)-O(38)#3	2.249	
Er(2)-O(31)	2.275	
Er(2)-O(34)	2.299	
Er(2)-O(43)	2.32	
Er(2)-O(40)	2.329	
Er(2)-O(37)#3	2.442	
Er(2)-O(42)	2.482	
Er(2)-O(33)	2.483	
Tm(1)-O(2)	2.229	2.356
Tm(1)-O(37)	2.26	
Tm(1)-O(38)	2.326	
Tm(1)-O(43)	2.359	
Tm(1)-O(42)#3	2.377	
Tm(1)-O(43)#3	2.387	
Tm(1)-O(32)	2.401	

Table S1 The RE–O bond in compounds **1–6**

Tm(1)-O(40)#3	2.431	
Tm(2)-O(44)	2.257	
Tm(2)-O(26)	2.276	
Tm(2)-O(37)#3	2.307	
Tm(2)-O(40)#3	2.312	
Tm(2)-O(34)#3	2.318	
Tm(2)-O(43)	2.447	
Tm(2)-O(36)#3	2.475	
Tm(2)-O(32)	2.549	
Yb(1)-O(2)	2.185	2.334
Yb(1)-O(37)	2.235	
Yb(1)-O(43)	2.321	
Yb(1)-O(38)	2.335	
Yb(1)-O(42)#3	2.353	
Yb(1)-O(32)	2.356	
Yb(1)-O(43)#3	2.396	
Yb(1)-O(40)#3	2.406	
Yb(2)-O(26)	2.221	
Yb(2)-O(44)	2.251	
Yb(2)-O(37)#3	2.29	
Yb(2)-O(40)#3	2.301	
Yb(2)-O(34)#3	2.303	
Yb(2)-O(43)	2.414	
Yb(2)-O(36)#3	2.449	
Yb(2)-O(32)	2.535	
Lu(1)-O(2)	2.171	2.322
Lu(1)-O(37)	2.221	
Lu(1)-O(38)	2.307	
Lu(1)-O(43)	2.32	
Lu(1)-O(42)#5	2.345	
Lu(1)-O(32)	2.369	
Lu(1)-O(40)#5	2.392	
Lu(1)-O(43)#5	2.393	
Lu(2)-O(44)	2.209	
Lu(2)-O(26)	2.229	
Lu(2)-O(40)#5	2.269	
Lu(2)-O(37)#5	2.273	
Lu(2)-O(34)#5	2.301	
Lu(2)-O(43)	2.393	
Lu(2)-O(36)#5	2.436	
Lu(2)-O(32)	2.525	
Lu(1)-O(2)	2.171	
Y(1)-O(2)	2.223	2.367

Y(1)-O(37)	2.262	
Y(1)-O(38)	2.345	
Y(1)-O(43)	2.372	
Y(1)-O(32)	2.394	
Y(1)-O(43)#3	2.404	
Y(1)-O(42)#3	2.404	
Y(1)-O(40)#3	2.432	
Y(2)-O(44)	2.272	
Y(2)-O(26)	2.296	
Y(2)-O(37)#3	2.327	
Y(2)-O(40)#3	2.34	
Y(2)-O(34)#3	2.348	
Y(2)-O(43)	2.462	
Y(2)-O(36)#3	2.471	
Y(2)-O(32)	2.529	
Y(1)-O(2)	2.223	