Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

> Electronic Supplementary Material (ESI) for Dalton Trans This journal is © The Royal Society of Chemistry 2014

Supporting Information

New Library of Arsine, Stibine-Stablied *N*-heterocyclic Carbene Palladium Complexes: Synthesis, Structures and Activities in C–C and C–N Coupling Reactions

Jin Yang,^a Pinhua Li,^a Yicheng Zhang,^a and Lei Wang^{a,b,*}

^a Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P R China Tel: + 86-561-3802-069 Fax: + 86-561-3090-518 E-mail: leiwang@chnu.edu.cn

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P R China

Table of Contents for Supporting Information

1. Table S1 Crystallographic data for complexes 1a–1d and 2a–2d	1
2. Characterization data for the products	3
3. ¹ H and ¹³ C-{ ¹ H} NMR spectra of the complexes $1a-1d$ and $2a-2d$	5
4. ¹ H and ¹³ C-{ ¹ H} spectra of the pruducts	13
5. References	23

Compound	1 a	1b•CH ₂ Cl ₂	$(\mathbf{1c})_4 \bullet CH_2Cl_2$	$(\mathbf{1d})_2 \bullet CH_2Cl_2$
formula	C ₃₉ H ₃₉ AsCl ₂ N ₂ Pd	$C_{40}H_{41}Cl_4N_2PdSb$	$C_{181}H_{206}As_4Cl_{10}N_8Pd_4$	$C_{91}H_{104}Cl_6N_4Pd_2Sb_2$
fw	787.94	919.70	3573.32	1922.78
crystal system	monoclinic	monoclinic	monoclinic	monoclinic
space group	<i>P</i> 2(1)/ <i>c</i>	P2(1)/c	P2(1)/c	C2/c
a /Å	17.556(7)	19.8365(19)	24.870(6)	31.143(6)
b /Å	13.840(6)	13.9429(13)	19.199(5)	13.853(3)
c /Å	15.138(6)	14.4872(14)	18.773(4)	23.658(5)
$\Box \alpha / \text{deg}$	90.00	90.00	90.00	90.00
$\Box \beta / \deg$	92.799(7)	91.9250(10)	101.939(5)	114.411(3)
$\Box \gamma / \deg$	90.00	90.00	90.00	90.00
$V/\text{\AA}^3$	3674(3)	4004.6(7)	8770(3)	9294(3)
Z	4	4	2	4
$D_{calc}/g \ cm^{-3}$	1.425	1.525	1.353	1.374
<i>F</i> (000)	1600	1840	3668	3896
μ /mm $^{-1}$	1.573	1.420	1.356	1.171
GOF	1.049	1.030	0.997	1.016
reflections collected	17968	19934	44371	23266
independent reflections (R_{int})	6452 (0.0551)	7054 (0.0210)	15414 (0.0967)	8158 (0.0248)
observed reflections $[I > 2\sigma(I)]$	4825	6085	7894	6540
refined parameters	412	449	872	495
$R1 \left[I > 2\sigma(I)\right]$	0.0495	0.0277	0.0525	0.0308
wR2 (all data)	0.1522	0.0687	0.1352	0.0765

 Table S1 Crystallographic data for complexes 1a-1d and 2a-2d

Compound	2a	(2b)•CH ₂ Cl ₂	2c• 0.5CH ₂ Cl ₂	2d
formula	$C_{39}H_{41}AsCl_2N_2Pd$	$C_{40}H_{43}Cl_4N_2PdSb$	$C_{45.5}H_{54}AsCl_3N_2Pd$	$C_{45}H_{53}Cl_2N_2PdSb$
fw	789.96	921.71	916.58	920.94
crystal system	monoclinic	monoclinic	monoclinic	hexagonal
space group	P2(1)/c	P2(1)/c	P2(1)/n	P65
a /Å	17.317(6)	19.780(3)	10.684(4)	25.982(5)
b /Å	13.876(5)	13.9846(17)	12.179(5)	25.982(5)
c /Å	15.020(5)	14.4282(18)	35.633(13)	12.486(2)
$\Box \alpha / \text{deg}$	90.00	90.00	90.00	90.00
$\Box eta / \deg$	92.337(5)	92.037(2)	93.220(6)	90.00
$\Box \gamma / \deg$	90.00	90.00	90.00	120.00
$V/\text{\AA}^3$	3606(2)	3988.5(9)	4629(3)	7299(2)
Z	4	4	4	6
$D_{calc}/g \ cm^{-3}$	1.455	1.535	1.315	1.257
<i>F</i> (000)	1608	1848	1884	2808
μ /mm ⁻¹	1.603	1.426	1.314	1.062
GOF	1.043	1.011	1.082	1.111
reflections collected	18014	19915	22942	36826
independent	6327 (0.0262)	7000 (0.010()	8110 (0.0200)	8505 (0.0212)
reflections (R_{int})		/009 (0.0196)	8110 (0.0300)	8505 (0.0312)
observed reflections	6327	6052	7025	7927
$[I > 2\sigma(I)]$		6052	/035	/82/
refined parameters	400	449	468	457
$R1 \left[I > 2\sigma(I)\right]$	0.0297	0.0266	0.0348	0.0397
wR2 (all data)	0.0797	0.0730	0.0751	0.1028

Characterization data for the products

4-Methoxybiphenyl¹

¹H NMR (400 MHz, CDCl₃): δ = 7.55–7.51 (m, 4H), 7.40 (t, *J* = 8.0 Hz, 2H), 7.29 (t, *J* = 7.6 Hz, 1H), 6.97 (d, *J* = 8.8 Hz, 2H), 3.87 (3H, s).

¹³C NMR (100 MHz, CDCl₃): δ = 159.1, 140.8, 133.7, 128.7, 128.1, 126.7, 126.6, 114.2, 55.3.

3-Methoxybiphenyl¹

¹H NMR (400 MHz, CDCl₃): δ = 7.52 (d, *J* = 7.2 Hz, 2H), 7.40 (t, *J* = 7.2 Hz, 2H), 7.32–7.29 (3H, m), 7.02 (d, *J* = 7.6 Hz, 1H), 6.98 (t, *J* = 8.4 Hz, 1H), 3.78 (3H, s).

¹³C NMR (100 MHz, CDCl₃): δ = 156.4, 138.5, 130.8, 130.6, 129.5, 128.6, 127.9, 126.9, 120.8, 111.1, 55.5.

2-Methoxybiphenyl¹

¹H NMR (400 MHz, CDCl₃): δ = 7.58–7.56 (m, 2H), 7.43–7.39 (m, 2H), 7.35–7.31 (m, 2H), 7.17–7.12 (m, 2H), 6.89–6.86 (m, 1H), 3.82 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ = 159.9, 142.7, 141.0, 129.7, 128.7, 127.4, 127.1, 119.6, 112.8, 112.6, 55.2.

2-Phenylpyridine¹

¹H NMR (400 MHz, CDCl₃): δ = 8.60–8.58 (m, 1H), 7.90 (d, *J* = 7.2 Hz, 2H), 7.59–7.58 (2H, m), 7.39–7.35 (m, 2H), 7.32–7.28 (m, 1H), 7.10–7.07 (m, 1H).

¹³C NMR (100 MHz, CDCl₃): δ = 157.3, 149.5, 139.2, 136.6, 128.8, 128.6, 126.8, 121.9, 120.4.

3-Phenylpyridine¹

¹H NMR (400 MHz, CDCl₃): δ = 8.75 (s, 1H,), 8.50–8.49 (m, 1H,), 7.78–7.76 (m, 1H), 7.48 (d, *J* = 7.2 Hz, 2H), 7.40–7.36 (t, *J* = 7.2 Hz, 2H), 7.32–7.27 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ = 148.4, 148.3, 137.8, 136.6, 134.3, 129.0, 128.1, 127.1, 123.5.

4-Methyl-N-phenylaniline²

¹H NMR (400 MHz, CDCl₃): δ = 7.28 (t, *J* = 7.2 Hz, 2H), 7.13 (d, *J* = 7.6 Hz, 2H), 7.06–7.04 (m, 4H), 6.92 (t, *J* = 7.2 Hz, 1H), 5.64 (s, 1H), 2.35 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ = 143.8, 140.2, 130.8, 129.8, 129.2, 120.2, 118.8, 116.7, 20.6.

4-Methoxy-N-phenylaniline²

¹H NMR (400 MHz, CDCl₃): δ = 7.24 (t, *J* = 7.6 Hz, 2H), 7.10 (d, *J* = 8.4 Hz, 2H), 6.94–6.84 (m, 5H), 5.52 (s, 1H), 3.82 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ = 155.1, 145.0, 135.6, 129.2, 122.1, 119.4, 115.5, 114.5, 55.5.

N-(4-Methylphenyl)-2,6-dimethylaniline²

¹H NMR (400 MHz, CDCl₃): δ = 7.15 (d, *J* = 6.8 Hz, 2H), 7.11 (d, *J* = 6.0 Hz, 1H), 7.01 (d, *J* = 8.0 Hz, 2H), 6.47 (d, *J* = 8.0 Hz, 1H), 5.13 (s, 1H), 2.29 (s, 3H), 2.25 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 143.8, 138.6, 135.4, 129.6, 128.4, 127.4, 125.3, 113.7, 20.4, 18.3.

N-(4-Methoxyphenyl)-2,6-dimethylaniline²

¹H NMR (400 MHz, CDCl₃): δ = 7.15 (d, *J* = 6.8 Hz, 2H), 7.11 (d, *J* = 6.0 Hz, 1H), 7.01 (d, *J* = 8.0 Hz, 2H), 6.47 (d, *J* = 8.0 Hz, 2H), 5.13 (s, 1H), 2.29 (s, 3H), 2.25 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 152.7, 140.1, 139.2, 134.9, 128.6, 125.0, 115.2, 114.7, 55.6, 18.3. *N*-(2,6-Dimethylphenyl)naphthalen-2-amine³

¹H NMR (400 MHz, CDCl₃): δ = 7.76–7.72 (m, 2H), 7.56 (d, *J* = 8.4 Hz, 1H), 7.38 (t, *J* = 7.2 Hz, 1H), 7.28–7.20 (m, 4H), 7.03 (d, *J* = 7.2 Hz, 1H), 6.65 (s, 1H), 2.31 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 143.6, 137.8, 136.0, 134.9, 129.1, 128.6, 127.6, 126.3, 126.0, 126.0, 122.3, 117.6, 106.5, 18.3.

References

- T. E. Schmid, D. C. Jones, O. Songis, O. Diebolt, M. R. L. Furst, A. M. Z. Slawin and C. S. J. Cazin, *Dalton Trans.*, 2013, 42, 7345.
- (2) C. Desmarets, R. Schneider and Y. Fort, J. Org. Chem., 2002, 67, 3029.
- (3) C.-Y. Gao and L.-M. Yang, J. Org. Chem., 2008, 73, 1624.