Released neighboring-cation stress induced blue-shift of Eu^{2+} emission in (Ba,Sr)₃Lu(PO₄)₃:Eu²⁺ eulytite solid-solution phosphors

Ziyuan Wang^a, Zhiguo Xia^{*}, Maxim S. Molokeev^c, Victor V. Atuchin^{d,e}, QuanLin Liu^b

Figure S1. Powder XRD patterns for Rietveld structure analysis of $Ba_{(3-x)}Sr_xLu(PO_4)_3:0.03Eu, x=0.$

Figure S2. Powder XRD patterns for Rietveld structure analysis of $Ba_{(3-x)}Sr_xLu(PO_4)_3:0.03Eu, x=1.$

Figure S3. Powder XRD patterns for Rietveld structure analysis of $Ba_{(3-x)}Sr_xLu(PO_4)_3:0.03Eu, x=2.$

Figure S4. Powder XRD patterns for Rietveld structure analysis of $Ba_{(3-x)}Sr_xLu(PO_4)_3:0.03Eu, x=3.$

	2
$_{x}Sr_{x}Lu(PO_{4})_{3}:0.03Eu(x=0, 1, 2, 3)$ samples	
Table S1. Main parameters of processing and refinement	t of the $Ba_{(3-)}$

x = m(+) + (-) + () + (-) +	-,-,-,-,-	-P		
x	0	1	2	3
Sp.Gr.	I-43d	I-43d	I-43d	I-43d
<i>a</i> , Å	10.46040(8)	10.3454(2)	10.22147(7)	10.09020(6)
<i>V</i> , Å ³	1144.58(3)	1107.25(5)	1067.92(2)	1027.30(2)
Ζ	4	4	4	4
2θ-interval, °	5-120	5-120	5-120	5-120
Number of reflections	87	83	79	77
Number of parameters of refinement	46	41	41	41
$R_{wp}, \%$	5.73	6.36	5.07	4.67
$R_p, \%$	4.48	4.51	3.95	3.59
$R_{exp}, \%$	3.55	3.17	2.81	2.40
χ^2	1.61	2.00	1.81	1.95
$R_B, \%$	1.47	1.70	1.46	1.69

	x	У	Ζ	$B_{\rm iso}$	Occ.
x=0					
Ba	0.06744 (8)	0.06744 (8)	0.06744 (8)	2.0 (3)	0.7425
Lu	0.06744 (8)	0.06744 (8)	0.06744 (8)	2.0 (3)	0.25
Eu	0.06744 (8)	0.06744 (8)	0.06744 (8)	2.0 (3)	0.0075
Р	0.375	0	0.25	3.0 (4)	1
01	0.309 (2)	-0.002 (2)	0.103 (3)	4.4 (6)	0.507 (12)
O2	0.275 (2)	0.074 (2)	0.178 (2)	4.4 (6)	0.493 (12)
			x=1		
Ba	0.06749 (9)	0.06749 (9)	0.06749 (9)	2.0 (4)	0.495
Sr	0.06749 (9)	0.06749 (9)	0.06749 (9)	2.0 (4)	0.2475
Lu	0.06749 (9)	0.06749 (9)	0.06749 (9)	2.0 (4)	0.25
Eu	0.06749 (9)	0.06749 (9)	0.06749 (9)	2.0 (4)	0.0075
Р	0.375	0	0.25	3.0 (5)	1
O1	0.306 (2)	-0.006 (2)	0.106 (3)	5.0 (6)	0.524 (13)
O2	0.283 (2)	0.071 (2)	0.182 (3)	5.0 (6)	0.476 (13)
			x=2		
Ba	0.06777 (6)	0.06777 (6)	0.06777 (6)	2.0 (3)	0.2475
Sr	0.06777 (6)	0.06777 (6)	0.06777 (6)	2.0 (3)	0.495
Lu	0.06777 (6)	0.06777 (6)	0.06777 (6)	2.0 (3)	0.25
Eu	0.06777 (6)	0.06777 (6)	0.06777 (6)	2.0 (3)	0.0075
Р	0.375	0	0.25	2.2 (3)	1
O1	0.3013 (19)	-0.012 (2)	0.1169 (19)	4.7 (5)	0.474 (16)
02	0.2875 (18)	0.074 (2)	0.1588 (14)	4.7 (5)	0.526 (16)
x=3					
Sr	0.06733 (6)	0.06733 (6)	0.06733 (6)	2.0 (3)	0.7425
Lu	0.06733 (6)	0.06733 (6)	0.06733 (6)	2.0 (3)	0.25
Eu	0.06733 (6)	0.06733 (6)	0.06733 (6)	2.0 (3)	0.0075
Р	0.375	0	0.25	2.0 (3)	1
O1	0.3029 (15)	-0.0149 (19)	0.1101 (15)	5.0 (4)	0.503 (12)
O2	0.2870 (17)	0.0760 (18)	0.1539 (13)	5.0 (4)	0.497 (12)

Table S2. Fractional atomic coordinates and isotropic displacement parameters (Å²) of $Ba_{(3-x)}Sr_xLu(PO_4)_3$:0.03Eu

Table S3. Main bond lengths (Å) of $Ba_{(3-x)}Sr_xLu(PO_4)_3:0.03Eu$

x=0			
Ba/Lu/Eu—O1 ⁱ	2.323(2)	Ba/Lu/Eu—O1	2.653(2)
Ba/Lu/Eu—O2	2.458(2)	Ba/Lu/Eu—O2 ⁱ	2.968(2)
x=1			

Ba/Sr/Lu/Eu—O1 ⁱ	2.348(3)	Ba/Sr/Lu/Eu —O1	2.611(3)	
Ba/Sr/Lu/Eu —O2	2.519(3)	Ba/Sr/Lu/Eu —O2 ⁱ	2.937(3)	
x=2				
Ba/Sr/Lu/Eu — O1 ⁱ	2.432(2)	Ba/Sr/Lu/Eu — O1	2.571(2)	
Ba/Sr/Lu/Eu —O2	2.453(2)	Ba/Sr/Lu/Eu —O2 ⁱ	2.749(2)	
x=3				
Sr/Lu/Eu—O1 ⁱ	2.368(2)	Sr/Lu/Eu—O1	2.554(2)	
Sr/Lu/Eu—O2	2.384(2)	Sr/Lu/Eu—O2 ⁱ	2.654(2)	

Symmetry codes: (i) 1/2-x, y, -z