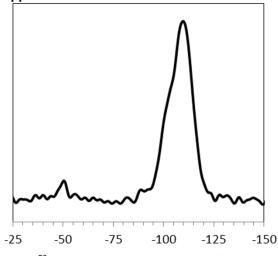
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014


> Analysis of Trivalent Cation Complexation to Functionalized Mesoporous Silica using Solid-State NMR Spectroscopy

> Jennifer Shusterman[†], Harris Mason[‡], Anthony Bruchet[†], Mavrik Zavarin[‡], Annie B. Kersting[‡], and Heino Nitsche[†]

[†]Department of Chemistry, University of California, Berkeley; Berkeley, California, 94720.

[‡]Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, L-231, PO Box 808, Livermore, California, 94550.

²⁹Si Chemical Shift (ppm from TMS)

Figure S1. ²⁹Si{¹H} SP/MAS NMR spectra for pristine CA-SBA. The resonances for the bulk silicon atoms are the Q peaks (Q^2 , Q^3 , and Q^4 have shifts of δ_{Si} =-93, -97, and -107 ppm, respectively) and for the surface silicon atoms are the T peaks (T^1 , T^2 , and T^3 have shifts of δ_{Si} =-51, -58, and -66 ppm, respectively).

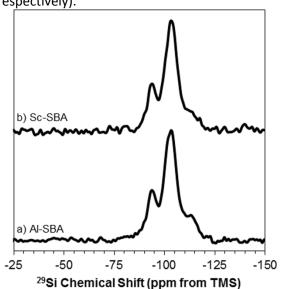


Figure S2. ²⁹Si{¹H} CP/MAS NMR spectra for solids from a) Al (Al-SBA and b) Sc (Sc- SBA) sorption to bare SBA-15. The resonances for the bulk silicon atoms are the Q peaks (Q², Q³, and Q⁴ have shifts of δ_{Si} =- 93, -97, and -107 ppm, respectively).

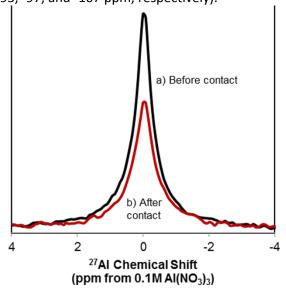


Figure S3. ²⁷Al SP/MAS NMR spectra of solution from Al sorption to CA functionalized SBA-15 a) before contact with CA-SBA and b) after contact with CA-SBA for 24 hours.

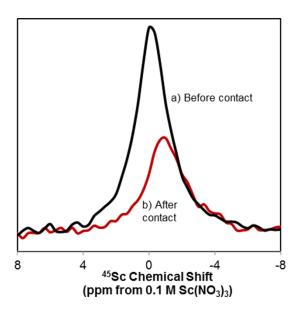


Figure S4. ⁴⁵Sc SP/MAS NMR spectra of solution from Sc sorption to CA functionalized SBA-15 a) before contact with CA-SBA and b) after contact with CA-SBA for 24 hours.

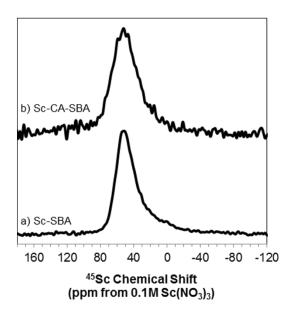


Figure S5. 45 Sc SP/MAS NMR spectra of solids from a) Sc sorption to bare SBA-15 (Sc-SBA) and b) CA functionalized SBA-15 (Sc-CA-SBA) collected on 500 MHz spectrometer. The chemical shifts for 6, 7, and 8-coordinated Sc occur in the ranges of δ_{Sc} =100 to 160 ppm, δ_{Sc} = 10 to 70 ppm, and δ_{Sc} =-10 to -50 ppm, respectively. 28

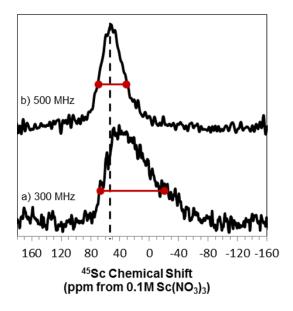


Figure S6. 45 Sc SP/MAS NMR spectra of solids from Sc sorption to CA functionalized SBA-15 (Sc-CA-SBA) on a) the 300 MHz spectrometer and b) the 500 MHz spectrometer. The chemical shifts for 6, 7, and 8-coordinated Sc occur in the ranges of δ_{Sc} =100 to 160 ppm, δ_{Sc} = 10 to 70 ppm, and δ_{Sc} =-10 to -50 ppm, respectively²⁸.