Observed hydrolysis of fluorine substituted bis(β -diketonato)-dichlorotitanium(IV) complexes

A. Kuhn^a and J. Conradie^{a,*}

^{*a*} Department of Chemistry, University of the Free State, 9300 Bloemfontein, Republic of South Africa. * Corresponding author, email: conradj@ufs.ac.za

Supplementary Information

Table S1. ¹H NMR chemical shift data of the methine protons (CH) for the chelated and uncoordinated β -diketones in Ti(β -diketonato)₂Cl₂ and H β -diketone respectively.

	Free β-diketone				
Compound	Colour	¹ H / ppm CH	∆ (A-B)	∆ (Α-Ηβ) ∆ (Β-Ηβ)	¹ H / ppm CH (Hβ)
(a) CF₃-β-dike	etones:				
Ti(tfaa) ₂ Cl ₂	Yellow	A = 6.40 B = 6.24	0.16	0.40 0.24	6.00
Ti(hfaa) ₂ Cl ₂	Yellow	A = 6.80 B = 6.70	0.10	0.40 0.30	6.40
Ti(tfth) ₂ Cl ₂	Red	A = 6.82 B = 6.63	0.19	0.37 0.18	6.45
Ti(tffu) ₂ Cl ₂	Red	A = 6.93 B = 6.74	0.19	0.44 0.25	6.49
b) Non-CF ₃ -β-diketones					
Ti(acac) ₂ Cl ₂	Orange	<i>cis</i> 6.00	-	0.50	5.50
Ti(ba) ₂ Cl ₂	Red	<i>cis</i> 6.67	-	0.48	6.19
Ti(dbm) ₂ Cl ₂	Red	<i>cis</i> 7.35	-	0.50	6.85

Table S2. ¹H and ¹⁹F NMR chemical shifts of the methine proton (CH) and CF₃ of *cis*-Ti(β -diketonato)₂Cl₂ complexes, at T = -60 °C. Values shown in blue are the relative contributions of the indicated signals (%) of the three *cis*-isomers.

Compound	¹ H / CH ppm	№ of Peaks	¹⁹ F / CF ₃ ppm	№ of Peaks	
a) Symmetric₃-β-diketones					
Ti(hfaa) ₂ Cl ₂	6.85 (100)	1	-73.39, -73.49 (50.0), (50.0)	2	
(b) Unsymmetric-β-diketones					
Ti(tffu) ₂ Cl ₂			-73.48, -73.57, -73.62, -74.55 (15.3), (11.5), (22.7), (50.5)	4	
Ti(tfth) ₂ Cl ₂			-73.31, -73.52, -74.39, -74.43 (14.3), (57.1), (14.3), (14.3)	4	
Ti(tfaa) ₂ Cl ₂	6.52, 6.51, 6.50, 6.49 (26.3), (26.3), (23.7), (23.7)	4	-73.66, -73.72, -74.80, -74.83 (24.3), (30.8), (24.3), (20.6)	4	
Ti(ba) ₂ Cl ₂	6.77, 6.76 (27.9), (72.1)	2*	¹ H / CH ₃ : 2.48, 2.47, 2.37 (17.4), (27.9), (54.7)	3*	

* Temperature lowering below -60 °C, needed for complete peak slitting, is limited by the freezing point of CDCl₃ (-63.5 °C).

	{Ti(hfaa) ₂ Cl} ₂ (<i>µ</i> -O)	[Ti(hfaa)₂(<i>μ</i> -O)]₄
Formula	$Ti_2O_9C_{20}H_4CI_2F_{24}$	$Ti_4O_{20}C_{40}H_8F_{48}$
Formula weight	1010.93	1912.06
Crystal colour/habit	Yellow, cuboid	Yellow, cuboid
Crystal system	Tetragonal	Monoclinic
Space group	I4 ₁ /a	P21/n
Unit cell dimension	a = 23.1255(4)	a = 13.7394(4)
/Å	b = 23.1255(4)	b = 16.4156(4)
/ °	c = 12.3948(5)	c = 28.3400(7)
	α = 90	α = 90
	$\beta = 90$	$\beta = 99.7990(10)$
	$\gamma = 90$	$\gamma = 90$
Volume / Å ³	6628.6(3)	
Z	8	6298.6(3)
Density _{calc} / Mg m ⁻³	2.026	4
Temperature / °C	-173(2)	2.016
Wavelength / Å	0.71073	-173(2)
Absorption coefficiet / mm ⁻¹	0.825	0.71073
F(000)	3920	0.700
Crystal size / mm ³	0.29 x 0.20 x 0.18	0.40 x 0.35 x 0.29
Theta range for data collection / $^{\circ}$	2.49 to 28.27	1.44 to 28.35
Index ranges	-30 ≤ h ≤ 29,	-17 ≤ h ≤ 18,
	-29 ≤ k ≤ 30,	-21 ≤ k ≤ 15,
	-16 ≤ l ≤ 15	-35 ≤ ≤ 37
Reflections collected	34 701	55 209
Independent reflections	4105[R(int) = 0.0399]	15 535[R(int) = 0.0301]
Completeness to theta = 28.35 / %	100.0	98.7
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents
Max. and min. transmission	0.8657 and 0.7958	0.8227 and 0.7670
Refinement method	Full-matrix least- squares on F ²	Full-matrix least- squares on F ²
Data/restraints/parameters	4105 / 0 / 259	15 535 / 0 / 1007
Goodness-of-fit on F ²	1.017	1.030
Final R indices [I>2sigma(I)]	$R_1 = 0.0357,$	$R_1 = 0.0465,$
	wR ₂ = 0.0812	wR ₂ = 0.1189
R indices (all data)	$R_1 = 0.0454$	$R_1 = 0.0608$
	wR ₂ = 0.0871	wR ₂ = 0.1333
Largest diff. peak and hole / e.Å ⁻³	0.524 and -0.377	1.953 and -1.241

Table S3. Crystal data and structure refinement data for dimeric ${Ti(hfaa)_2Cl}_2(\mu$ -O) and tetrameric, $[Ti(hfaa)_2(\mu$ -O)]_4 structures.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
Dimer C(8)-H(8)Cl#1	0.95	2.89	3.840(2)	176.2
Tetramer C(8)-H(8)F(42)#2 C(23)-H(23)F(38)#3 C(33)-H(33)F(3)#4	0.95 0.95 0.95	2.42 2.49 2.34	3.367(2) 3.195(3) 3.281(3)	172.0 130.8 168.9

Table S4. Hydrogen bonds for ${Ti(hfaa)_2Cl}_2(\mu-O)$ and ${Ti(hfaa)_2(\mu-O)}_4$ (Å and °).

Symmetry transformations used to generate equivalent atoms:

#1 -y+3/4,x-3/4,z+1/4 #2 -x,-y+1,-z+1 #3 -x,y+1/2,-z+3/2 #4 x-1,y,z

Crystallography

The initial unit cell and data collection were achieved by the Apex2 software¹ utilizing COSMO² for optimum collection of more than a hemisphere of reciprocal space. A total of 1143 and 1335 frames were collected at exposure times of 35 and 8 s.frame⁻¹ for {Ti(hfaa)₂Cl}₂(μ -O) and [Ti(hfaa)₂(μ -O)]₄ respectively. Both collections were done with a 0.5° scan width in φ and ω . The frames were integrated using a narrow-frame integration algorithm and reduced with the SAINT-Plus³ and XPREP³ software packages respectively. Analysis of the data sets showed no significant decay during the data collection. Data were corrected for absorption effects using the multi-scan technique SADABS⁴. Both structures were solved by the direct methods package SIR97⁵ and refined using the WinGX software package⁶ incorporating SHELXL.⁷

The structure of $[Ti(hfaa)_2(\mu-O)]_4$ showed large thermal ellipsoids on some of the peripheral CF₃ groups, especially for C38, F43, F44 and F45. The fluorides for this group was subsequently refined as disordered over two positions with their occupancies (50.26% and 49.74%) linked to a free variable to add to unity. Anisotropic displacement parameters of the disordered fluoride atoms had to be restrained (SIMU and DELU) with the default parameters of these adjusted to avoid serious alerts from the checkCIF routines. C–F bond distances, varying from 1.242 Å to 1.334 Å, were not restrained as these remained stable and within bounds during refinement. Four discrepant reflections were also removed during the final refinement cycles as these showed up as serious alerts. The final refinement of $[Ti(hfaa)_2(\mu-O)]_4$ showed only minor alerts, of note are the thermal ellipsoids for a few fluoride atoms. As these are signs of minor disorders, they were not further treated by refinement as it is believed that addressing these will not add to the significance of the paper. A similar approach was taken during the refinement of $[Ti(hfaa)_2Cl]_2(\mu-O)$, which also showed signs of minor disorder in the CF₃ regions.

Both data sets were evaluated online with the latest checkCIF routines, and showed no serious errors. The final refinement cycles yielded electron density maps with the highest peak value of 0.52 e.Å⁻³ at 1.15 Å from F2 and the deepest hole -0.38 e.Å⁻³ at 0.81 Å from F3 for {Ti(hfaa)₂Cl}₂(μ -O), and the highest peak value of 0.86 e.Å⁻³ at 0.69 Å from F45B and the deepest hole -0.71 e.Å⁻³ at 0.13 Å from F43B for [Ti(hfaa)₂(μ -O)]₄.

For both structures the aromatic H atoms were placed in geometrically idealized positions (C–H = 0.95 Å) and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$. Non-hydrogen atoms were refined with anisotropic displacement parameters. Atomic scattering factors were taken from the International Tables for Crystallography Volume C.⁸ The molecular plot was drawn using the DIAMOND program⁹ with a 30% thermal envelope probability for non-hydrogen atoms. Hydrogen atoms were drawn as arbitrary sized spheres with radius of 0.135 Å.

Table S5. Optimized geometry, relative energy of the 10 possible isomers of ${Ti(tfaa)_2Cl}_2(\mu$ -O). Color code used for atoms shown below:

Isomer number ^a	Optimized geometry	E _{rel} (eV)
1111		0.060
1112 (enantiomer 2111)		0.001
1212 (enantiomer 2121)		0.039
1122 (enantiomer 2211)		0.002
1221		0.000
1222 (enantiomer 2221)		0.025

a The isomers are referred to by 4 numbers indicating the groups that occupy the 4 *trans* positions: $1 = CF_3$ and 2 = R (CH₃, C₄H₃S and C₄H₃O). For the higher symmetry isomers 1111 and 2222, 2 ring H and 2 CF₃ NMR signals are expected while for the other isomers 4 ring H and 4 CF₃ NMR signals are expected.

Optimized Cartesian coordinates (Å)

DFT calculations: Geometries were optimized using the ADF (Amsterdam Density Functional) 2012 programme¹⁰ with the OLYP (Handy-Cohen and Lee-Yang-Parr) GGA (Generalized Gradient Approximation) functional, the TZP (Triple ζ polarized) basis set, no symmetry constraint (C_1) in chloroform ($\mathcal{E}_0 = 4.8$) as solvent.^{11,12,13,14,15}

1 Ti(acac)₂Cl₂

ССССССССССННННННННННННННООООТ	0.544831000 0.794263000 1.668169000 1.945855000 2.948994000 -0.555535000 -0.799501000 -1.672008000 -1.947232000 -2.940519000 1.698676000 -1.710454000 0.513362000 0.802750000 1.119080000 2.176614000 2.488357000 3.334133000 3.782890000 -0.524077000 -0.820555000 -1.128035000 -2.180496000 -2.452150000 -3.363833000 -3.747470000 0.150372000 1.388318000 -0.154428000 -1.391587000	$\begin{array}{c} 4.197759000\\ 2.726202000\\ 2.240271000\\ 0.869695000\\ 0.400866000\\ -4.203471000\\ -2.731914000\\ -2.731914000\\ -2.249409000\\ -0.879580000\\ -0.412600000\\ -0.412600000\\ -0.250972000\\ 0.256199000\\ -4.411265000\\ 4.491354000\\ 4.797812000\\ 2.951188000\\ -0.354046000\\ 1.219890000\\ -0.354046000\\ 1.219890000\\ -0.86563000\\ 4.401104000\\ -4.490815000\\ -4.805349000\\ -2.962720000\\ 0.291926000\\ -1.239493000\\ 0.133967000\\ 1.953615000\\ -0.049642000\\ -1.957120000\\ 0.041965000\\ -0.000144000\end{array}$	$\begin{array}{c} -0.893071000\\ -1.066725000\\ -2.040360000\\ -2.201530000\\ -3.221233000\\ -0.875290000\\ -1.057440000\\ -2.034697000\\ -2.203016000\\ -2.203016000\\ -3.233093000\\ 1.575661000\\ 1.571268000\\ -0.998704000\\ 0.130526000\\ -1.599886000\\ -2.680981000\\ -3.867058000\\ -3.829880000\\ -2.680981000\\ -3.829880000\\ -2.680981000\\ -3.829880000\\ -2.680981000\\ -3.829880000\\ -2.680981000\\ -3.829880000\\ -2.680981000\\ -3.829880000\\ -3.829880000\\ -3.82980000\\ -3.82980000\\ -3.82980000\\ -3.82980000\\ -3.82980000\\ -3.82980000\\ -3.82980000\\ -1.59190000\\ -3.804567000\\ -2.732314000\\ -0.243749000\\ -1.501841000\\ -0.243749000\\ -1.504124000\\ -0.236400000\\ -0.0036400000\\ -0.003640000\\ -0.003640000\\ -0.003640000\\ -0.003640000\\ -0.003640000\\ -0.003640000\\ -0.003640000\\ -0.003640000\\ -0.003640000\\ -0.003640000\\ -0.003640000\\ -0.003640000\\ -0.003640000\\ -0.003640000\\ -0.003640000\\ -0.00364000\\ -0.00364000\\ -0.00364000\\ -0.00364000\\ -0.00364000\\ -0.00364000\\ -0.00364000\\ -0.0000\\ -0.0000\\ -0.0000\\ -0.0000\\ -0.0000\\ -0.0000\\ -0.0000\\ -0.000\\ -0.0000\\ -0.0000\\ -0.000\\$
2	Ti(hfaa) ₂ Cl ₂	0.00014000	0.003049000
0000000	0.138525000 0.360291000 0.703775000 0.842496000 1.081575000 1.084863000 1.648564000	3.640585000 2.803819000 -3.377897000 3.406101000 -2.353767000 2.630473000 3.304836000	-2.413468000 -1.114339000 2.694342000 0.044064000 1.578233000 1.192129000 2.486176000

C C C L L F F F F F F F F F F F F F H H O O O O T I	2.280681000 2.618199000 3.967326000 -0.815895000 -2.048512000 0.419200000 0.465440000 0.751296000 0.929290000 1.675166000 1.907518000 2.799880000 3.711718000 4.655721000 4.655721000 4.765469000 -0.430332000 -1.153369000 1.055527000 2.961647000 0.060951000 0.188969000 0.885428000 1.917848000 -0.072904000	$\begin{array}{r} -2.474200000\\ -1.532813000\\ -1.669717000\\ -1.331170000\\ 0.569148000\\ 4.955297000\\ -2.730386000\\ 3.176253000\\ 3.176253000\\ 3.166942000\\ -4.296798000\\ 4.624828000\\ 2.694254000\\ -1.963050000\\ -0.501256000\\ -2.644882000\\ -2.644882000\\ -2.644882000\\ -3.280602000\\ 1.569063000\\ -1.455785000\\ 1.387377000\\ -0.544450000\\ 0.003222000\\ \end{array}$	$\begin{array}{c} 0.881251000\\ -0.107331000\\ -0.886599000\\ -1.630268000\\ 0.929339000\\ -2.244281000\\ 3.863927000\\ 3.499126000\\ -3.412260000\\ 2.912796000\\ 2.322428000\\ 2.322428000\\ 2.322428000\\ 2.868935000\\ -2.190779000\\ -0.849472000\\ -0.388694000\\ 2.347909000\\ -2.820389000\\ 0.053006000\\ 1.113947000\\ -1.258944000\\ 1.401345000\\ 1.311698000\\ -0.470692000\\ 0.018813000\\ \end{array}$
3	{Ti(acac) ₂ Cl} ₂ (<i>µ</i> -O)		
СССССССССССССССССССССННННННННН	2.121892000 2.158049000 2.261296000 2.340174000 2.346902000 2.532852000 2.768226000 4.129482000 4.655076000 6.149866000 -2.132441000 -2.166353000 -2.258848000 -2.345003000 -2.355149000 -2.536249000 -2.766366000 -4.127786000 -4.653609000 -6.148472000 1.983327000 1.975163000 1.674379000 1.543132000 1.674379000 1.721834000 2.363573000 2.489085000 2.650487000 2.819313000 3.067556000 3.417123000	2.676422000 2.248225000 -3.529372000 2.854653000 3.192960000 3.903173000 -2.394598000 -2.113080000 -1.087795000 -0.899197000 -2.664760000 -2.242136000 3.537222000 -2.858023000 -3.190655000 -3.910949000 2.399850000 2.119538000 1.091546000 0.902636000 -1.207145000 1.197313000 2.487290000 -3.140805000 3.890641000 -4.244464000 3.732804000 4.232129000 4.903064000 2.065644000 -4.046838000 3.654148000	$\begin{array}{c} 3.310180000\\ 1.865442000\\ 2.565229000\\ -0.516270000\\ 0.840704000\\ -1.580939000\\ 1.713025000\\ 1.616839000\\ 0.792726000\\ 0.687217000\\ -3.320976000\\ -1.874654000\\ -2.550775000\\ 0.504977000\\ -2.550775000\\ 0.504977000\\ -0.853377000\\ 1.565549000\\ -1.702327000\\ -1.605992000\\ -0.785315000\\ -0.681079000\\ -2.157400000\\ 2.161634000\\ 3.707685000\\ 3.295955000\\ -2.261565000\\ 1.933842000\\ 3.436658000\\ 1.113902000\\ -1.160711000\\ 3.892501000\\ 3.087280000\\ -2.178572000\\ \end{array}$

$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} -2.733175000\\ 0.130223000\\ -1.038532000\\ -1.592096000\\ -2.478705000\\ 3.149942000\\ -3.904376000\\ 4.247664000\\ -3.719606000\\ -4.228557000\\ -4.908506000\\ -2.048730000\\ 4.059645000\\ -2.048730000\\ 4.059645000\\ -3.661802000\\ 2.742272000\\ -0.125273000\\ 1.036191000\\ 1.598969000\\ -0.001705000\\ -1.731858000\\ 0.994816000\\ 1.652259000\\ -0.297540000\\ 1.733381000\\ -0.990135000\\ -1.658143000\\ 0.298774000\\ -0.108995000\\ 0.106048000\\ \end{array}$	$\begin{array}{c} 2.174344000\\ 0.960972000\\ -0.355814000\\ 1.320599000\\ -3.718437000\\ -3.285805000\\ 2.242334000\\ -1.917742000\\ -3.451533000\\ -1.917742000\\ -3.451533000\\ -1.130365000\\ 1.141155000\\ -3.899965000\\ -3.067840000\\ 2.168234000\\ -2.160760000\\ -0.960633000\\ 0.362617000\\ -1.310853000\\ -0.960633000\\ 0.362617000\\ -1.310853000\\ -0.960633000\\ 0.362617000\\ -1.310853000\\ -0.950748000\\ 0.102726000\\ -1.076505000\\ -1.657958000\\ 0.944063000\\ -0.098061000\\ -0.055252000\\ 0.055414000\end{array}$
4 {Ti(hfaa) ₂ Cl} ₂ (µ C 0.427394000 C 0.704165000 C 1.719599000 C 1.978580000 C 2.669864000 C 2.919255000 C 3.080223000 C 3.080223000 C 3.13056000 C 3.472846000 C 3.472846000 C -0.410417000 C -0.694651000 C -1.976280000 C -1.976280000 C -2.924985000 C -2.924985000 C -3.085818000 C -3.085818000 C -3.821656000 C -3.821656000 C 1.309818000	<pre>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	$\begin{array}{c} -6.298197000\\ -4.840625000\\ -4.620550000\\ -3.343320000\\ 2.494382000\\ 2.121018000\\ 2.121018000\\ 2.121018000\\ 2.895643000\\ 2.895643000\\ 2.471068000\\ 2.080523000\\ 6.304371000\\ 4.845101000\\ 4.624567000\\ 3.345071000\\ -2.509734000\\ -2.509734000\\ -2.115355000\\ 3.116372000\\ -2.929595000\\ -2.929595000\\ -2.476886000\\ -2.058836000\\ -1.689505000\\ 1.701825000\end{array}$
F 0.827635000 F 1.328554000 F 2.528207000 F 2.844550000	-0.232483000 0.201344000 -3.488828000 3.429001000	6.697748000 -7.201162000 -2.599404000 2.115512000

F F F F F F F F F F F F F F F F F H H H H O O O O	2.988963000 3.432726000 3.672888000 3.724347000 4.009875000 4.665799000 5.128608000 -0.435989000 -0.808848000 -1.307312000 -2.545800000 -2.833557000 -2.989135000 -3.450847000 -3.674261000 -3.721125000 -4.020835000 -4.661473000 -5.138351000 2.294653000 4.525884000 -2.279393000 -4.528219000 0.044995000 1.394799000 1.394799000 1.394799000 1.397436000 -1.397436000 -1.434619000 -1.705906000 0.011999000	2.714989000 -3.466042000 -3.248813000 -2.697669000 -1.907574000 2.416285000 -2.331888000 -1.995691000 0.258406000 -0.173783000 3.480879000 -3.440198000 -2.692722000 3.464357000 3.226838000 2.703942000 1.886304000 -2.424051000 2.319276000 -1.179266000 0.029645000 1.199666000 0.023315000 -0.656809000 -0.924361000 1.15276000 -1.554297000 -0.005506000 0.662112000 0.921717000 -1.119569000 1.546281000 -0.418059000 0.412752000	$\begin{array}{r} 4.188432000\\ 3.066479000\\ 0.892982000\\ -4.260918000\\ -2.234627000\\ 2.799663000\\ 2.253339000\\ 6.351534000\\ -6.700231000\\ 7.209264000\\ 2.578996000\\ -2.167877000\\ -4.228272000\\ -3.039485000\\ -0.866169000\\ 4.261649000\\ 2.248121000\\ -2.827943000\\ -2.827943000\\ -2.827943000\\ -2.827943000\\ -2.223475000\\ -5.455604000\\ 2.705574000\\ 5.460066000\\ -2.714286000\\ 3.970783000\\ -2.254542000\\ 2.244926000\\ 1.815075000\\ 0.000777000\\ -3.967420000\\ 2.255961000\\ -2.255324000\\ -1.773813000\\ -1.771034000\end{array}$
5 C C C C C C C C C C C C C C C C C C C	<pre>[Ti(acac)₂(µ-O)]₄ 1.032401000 1.329853000 1.373765000 1.584740000 1.600638000 1.926889000 1.932020000 1.945886000 1.95200000 1.972156000 2.804149000 3.110651000 3.528080000 3.551304000 4.431979000 4.764736000 4.799389000 4.871793000 6.241110000 6.265406000 -1.006238000</pre>	4.701779000 3.349983000 3.196078000 1.898643000 1.956549000 -1.506797000 -4.422381000 -1.582596000 -3.029843000 -2.851253000 4.086192000 2.619656000 -3.475751000 -1.979197000 2.165139000 -1.285691000 0.813019000 0.108548000 0.760701000 0.426485000 -4.701007000	$\begin{array}{c} 1.890329000\\ 2.500817000\\ 3.888818000\\ 6.052037000\\ 4.536247000\\ -6.038622000\\ -1.917802000\\ -4.523756000\\ -2.508844000\\ -3.894437000\\ -2.666254000\\ -2.455247000\\ 2.730725000\\ 2.509157000\\ 2.509157000\\ 2.500265000\\ -2.252926000\\ 2.272362000\\ 2.306245000\\ -2.307492000\\ 1.887692000\end{array}$

С	-1.347266000	-3.197261000	3.887986000
С	-1.566814000	-1.902514000	6.052020000
С	-1.584596000	-1.960156000	4.536344000
С	-1.935425000	1.512372000	-6.035628000
С	-1.953199000	4.424919000	-1.911882000
С	-1.954584000	1.586654000	-4.520691000
С	-1.968385000	3.033018000	-2.504661000
С	-1.980452000	2.855030000	-3.890446000
С	-2.776761000	-4.085764000	-2.685838000
C	-3.094484000	-2.622594000	-2.468132000
C	-3.533697000	3,468796000	2.730114000
C	-3 553977000	1 972036000	2 509512000
C	-4 419023000	-2 177292000	-2 484762000
C	-1 765991000	1 27622000	2 498567000
C	4 709/09000	0 020070000	2 26210000
C	-4.798498000	-0.830078000	-2.202198000
C	-4.889604000	-0.119284000	2.273999000
C	-6.236962000	-0.775369000	2.313587000
C	-6.268208000	-0.457096000	-2.314128000
H	0.120235000	4.625434000	1.28/908000
H	0./343/2000	1.285866000	6.3/2/98000
Н	0.902690000	5.481671000	2.643360000
H	0.976380000	-1.064957000	-6.359046000
H	1.014796000	-4.545338000	-1.330981000
H	1.196431000	4.072198000	4.503648000
Н	1.504397000	2.884656000	6.514644000
Н	1.843928000	4.984208000	1.210662000
Н	1.978087000	-5.202029000	-2.680809000
Н	1.980686000	-3.736314000	-4.521852000
Н	2.042197000	-2.482923000	-6.514540000
Н	2.127754000	4.199494000	-3.520421000
Н	2.274886000	4.470468000	-1.786928000
Н	2.492751000	1.401285000	6.408578000
Н	2.723753000	-0.838332000	-6.380876000
Н	2 773972000	-4 539541000	-1 226556000
н	2 878492000	-3 710461000	3 580756000
н	3 089485000	-3 959602000	1 850394000
н	3 704040000	4 681099000	-2 834086000
и П	1 523619000	-3 887269000	2 908590000
и П	5 219630000	2 890792000	-2 638477000
11	5.219030000	1 940246000	2 671977000
п	5.075052000	1 522057000	2.0/10//000
п	6.236673000	1.070076000	3.094396000
п	6.416646000	1.270070000	1.557255000
H	6.424165000	-0.262456000	-3.145359000
H	6.531420000	-0.114098000	-1.393519000
H	6.927002000	1.28/018000	-2.42/13/000
H	7.04/344000	0.045643000	2.482812000
H	-0.104110000	-4.616212000	1.2/1/18000
Н	-0.716991000	-1.288399000	6.371912000
Н	-0.857586000	-5.478536000	2.639653000
H	-0.992238000	1.055085000	-6.355767000
Н	-1.046810000	4.543184000	-1.307638000
Н	-1.160516000	-4.071520000	4.502749000
Н	-1.483870000	-2.888586000	6.513980000
Н	-1.824771000	-4.993411000	1.220635000
H	-1.982081000	5.205844000	-2.674389000
Н	-1.984883000	3.739941000	-4.518076000
Н	-2.034923000	2.490882000	-6.510184000
Н	-2.087996000	-4.189402000	-3.531277000
Н	-2.258205000	-4.473593000	-1.801732000

H H H H H H H H H H H H H H H H H H H	$\begin{array}{r} -2.475128000\\ -2.743233000\\ -2.807524000\\ -2.889215000\\ -3.091014000\\ -3.671037000\\ -4.530637000\\ -5.200073000\\ -5.200073000\\ -5.678446000\\ -6.263778000\\ -6.396356000\\ -6.424070000\\ -6.553031000\\ -6.917876000\\ -7.048504000\\ 0.000490000\\ 1.521120000\\ 1.521120000\\ 1.808252000\\ 1.923748000\\ 1.942211000\\ 2.038987000\\ 2.078414000\\ 2.395497000\\ 3.889678000\\ 3.979774000\\ -0.002844000\\ -1.513668000\\ -1.936145000\\ -1.936145000\\ -1.96833000\\ -2.040291000\\ -2.068982000\\ -2.396940000\\ -3.885691000\\ -3.987925000\\ 1.770331000\\ 1.811165000\\ -1.768522000\\ -1.816389000\\ \end{array}$	$\begin{array}{c} -1.406749000\\ 0.857567000\\ 4.545192000\\ 3.704834000\\ 3.952565000\\ -4.684261000\\ 3.879180000\\ -2.907634000\\ 1.839019000\\ -1.503413000\\ -1.332440000\\ 0.284158000\\ 0.018835000\\ -1.315593000\\ -0.057584000\\ 0.000153000\\ 2.403778000\\ 0.859879000\\ -0.475523000\\ -2.076912000\\ 0.859879000\\ -0.475523000\\ -2.076912000\\ 0.173379000\\ 1.871846000\\ -1.439046000\\ 0.876651000\\ -0.125626000\\ 0.011641000\\ -2.406921000\\ 0.855252000\\ 0.478755000\\ 2.079308000\\ -0.176405000\\ -1.868705000\\ 2.079308000\\ -0.176405000\\ -1.868705000\\ 1.434067000\\ -0.885149000\\ 0.113246000\\ 0.404679000\\ -0.062868000\\ -0.407970000\\ 0.067218000\end{array}$	$\begin{array}{c} 6.409922000\\ -6.37888000\\ -1.236482000\\ 3.583738000\\ 1.851831000\\ -2.870201000\\ 2.902567000\\ -2.668317000\\ 2.665268000\\ 3.132529000\\ 1.384673000\\ -3.106121000\\ -1.369956000\\ -2.496772000\\ 2.450436000\\ 1.953354000\\ 1.953354000\\ 1.953354000\\ 1.953354000\\ 1.953354000\\ -2.496772000\\ 2.450436000\\ -2.496772000\\ 2.450436000\\ -2.496772000\\ -2.450436000\\ -2.496772000\\ -2.450436000\\ -2.496772000\\ -2.450436000\\ -2.496772000\\ -2.450436000\\ -3.906805000\\ -1.643704000\\ 0.018927000\\ -2.276584000\\ 2.338066000\\ 2.042626000\\ -2.021783000\\ -1.906708000\\ -1.906708000\\ -3.904770000\\ -3.904770000\\ -3.904770000\\ -3.904770000\\ -3.904770000\\ -2.277437000\\ 2.342068000\\ 2.047209000\\ -2.018404000\\ 1.803959000\\ -1.771764000\\ 1.805479000\\ -1.769510000\end{array}$
6	$[Ti(hfaa)_{2}(\mu-0)]_{4}$		
с с с с с с с с с с с с с с с с с с с	$\begin{array}{c} 1.661087000\\ 1.710018000\\ 1.782601000\\ 1.808155000\\ 1.815358000\\ 2.111549000\\ 2.146756000\\ 2.335964000\\ 2.335964000\\ 2.376469000\\ 2.533637000\\ 2.579346000\\ 2.981639000\\ 3.323793000\\ 3.467442000\\ 4.321298000\\ 4.703292000\\ 4.746959000\\ \end{array}$	4.761170000 3.335528000 3.201159000 1.922187000 1.809400000 -1.407628000 -1.509394000 -2.928591000 -2.773043000 4.099576000 -4.338603000 2.657641000 -3.525140000 -2.015724000 2.298750000 -1.392402000 1.005655000	1.943895000 2.579783000 3.961383000 4.559271000 6.124752000 -6.164346000 -4.597223000 -2.627801000 -4.007252000 -3.181489000 -2.002990000 -2.780513000 3.112416000 2.739579000 -2.879785000 2.847192000 -2.506253000

С	4.855039000	-0.028792000	2.504120000
С	6.274665000	0.619312000	2.689762000
С	6.275213000	0.653953000	-2.572121000
С	-1.669505000	-4.761377000	1.936282000
С	-1.727542000	-3.338149000	2.574457000
С	-1.835044000	-3.206849000	3.952019000
С	-1.857398000	-1.928183000	4.556209000
С	-1.901111000	-1.862581000	6.125724000
С	-2.138268000	1.409112000	-6.173675000
С	-2.156956000	1.499900000	-4.604782000
С	-2.334838000	2.928602000	-2.640457000
С	-2.385436000	2.766561000	-4.017741000
С	-2.519007000	-4.099568000	-3.164894000
С	-2.569988000	4.340842000	-2.018503000
С	-2.969539000	-2.657712000	-2.766449000
С	-3.270453000	3.541222000	3.114576000
С	-3.428235000	2.033696000	2.738302000
C	-4.310026000	-2.301/75000	-2.864677000
C	-4.6/0543000	1.422360000	2.846/3/000
C	-4./3/612000	-1.00/021000	-2.49/651000
C	-4.834492000	0.059230000	2.510002000
C	-6.25/821000	-0.5/6/3/000	2.705620000
C	-6.269433000	-0.66//40000	-2.552//3000
E.	0.583325000	4.8/9890000	1.130418000
r F	0.654807000	1.242843000	6.550632000
r F	0.818296000	-1.394505000	-6.591855000
r F	1.562482000	-4.6/30/1000	-1.1/1/02000
r F	1.589370000	5.747348000	2.8/4498000
r F	1 070072000	4.044817000	-4.243639000
r r	1 020070000	4.695727000	-2.133797000
r r	2 402557000	-3 666126000	1 1 2 0 5 2 2 0 0 0
r F	2 6862/1000	-5.31/599000	-2 9/1110000
r F	2 703982000	-0.267021000	-6 590358000
_ न	2 736517000	-2 452085000	-6 768218000
_ न	2 777674000	4 977076000	1 197048000
<u>-</u> न	2 790723000	-4 220681000	2 076117000
т F	2.840815000	1,021611000	6.538668000
т Г	3.576586000	4.896509000	-3.526186000
- F	3,731114000	-4.333734000	-1.278242000
F	4.509928000	-4.101783000	3.431833000
F	6.403303000	1.749884000	1.964277000
F	6.459493000	0.938524000	4.003847000
F	6.465698000	-0.502999000	-3.255677000
F	6.762640000	0.480390000	-1.312938000
F	7.016921000	1.618555000	-3.173559000
F	7.272375000	-0.230243000	2.326125000
F	-0.570353000	-4.885416000	1.152139000
F	-0.643110000	-2.008889000	6.629291000
F	-0.883337000	1.680945000	-6.632117000
F	-1.526875000	4.688289000	-1.225408000
F	-1.628812000	-5.749776000	2.866384000
F	-1.718008000	-4.048911000	-4.264209000
F	-1.810003000	-4.671645000	-2.159707000
F	-2.390957000	-0.680713000	6.557803000
F	-2.454649000	3.669212000	4.196640000
F	-2.481720000	0.174828000	-6.601387000
F	-2.674804000	-2.852537000	6.648256000
F	-2.712167000	4.232491000	2.089156000

F	-2.716340000	5.309426000	-2.959111000
F	-2.766067000	-4.969859000	1.158019000
F	-2.989853000	2.302957000	-6.744294000
F	-3.564286000	-4.916471000	-3.451609000
F	-3.695609000	4.332847000	-1.254293000
- F	-4,453664000	4,133530000	3,416986000
- F	-6 402546000	-1 705380000	1 980316000
- F	-6 434980000	-0 896896000	4 020877000
- ਸ	-6 469684000	0.557072000	-3 097806000
г Г	-6 779732000	-0 651070000	-1 289650000
r r	-6 983668000	-1 567100000	-3 276491000
r r	7 251100000	-1.307100000	2 251244000
	- 7.2311880000	0.202003000	2.551544000
п	1.002/04000	4.005407000	4.382889000
п	2.370849000	-3.631676000	-4.034097000
H	5.043530000	3.021466000	-3.232222000
H	5.560423000	-1.95/302000	3.188100000
H	-1.883200000	-4.092598000	4.5/1080000
Н	-2.586865000	3.621299000	-4.649096000
Н	-5.032188000	-3.027594000	-3.211278000
Н	-5.522171000	1.995974000	3.186938000
0	0.004361000	0.004027000	-1.922771000
0	0.007584000	-0.006201000	1.907467000
0	1.675312000	2.396322000	1.710145000
0	1.805016000	0.816889000	3.962397000
0	1.925415000	-0.431957000	-3.992896000
0	2.011204000	1.924047000	-2.383254000
0	2.046563000	0.197232000	-0.009733000
0	2.116991000	-2.020282000	-1.750948000
0	2.364624000	-1.487399000	2.356173000
0	3.956112000	0.742383000	2.090784000
0	4.019948000	0.068789000	-2.089887000
0	-1.668521000	-2.394721000	1.708374000
0	-1.809250000	-0.822539000	3.966576000
0	-1.925655000	0.427150000	-3.998453000
0	-1.998886000	-1.919246000	-2.378597000
0	-2.036004000	-0.192042000	-0.009026000
0	-2.108459000	2.023268000	-1.760819000
0	-2.330923000	1.494132000	2.356985000
0	-3.943583000	-0.722005000	2.096799000
0	-4.011926000	-0.067265000	-2.086293000
Ti	1.787055000	0.369728000	1.789230000
Ti	1,825243000	-0.015728000	-1.808341000
 Ti	-1 773946000	-0 372879000	1 787019000
тт Ті	-1 815864000	0 022265000	-1 807997000
т <u>т</u>	T.01001000	0.022203000	T.001221000

¹ Apex2 (Version 1.0-27), Bruker AXS Inc., Madison, Wisconsin, USA, 2005.

² COSMO (Version 1.48), Bruker AXS Inc., Madison, Wisconsin, USA, 2003.

³ SAINT-Plus (Version 7.12, including XPREP), Bruker AXS Inc., Madison, Wisconsin, USA, 2004.

⁴ SADABS (Version 2004/1), Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

⁵ A. Altomare, M.C. Burla, M. Camalli, G.L Cascarano, C. Giacovazzo, A. Guagliardi, A.G.G. Moliterni, G. Polidori and R. Spagna, J. Appl. Cryst., 1999, **32**, 115–119.

⁶ L.J. Farrugia, WinGX (Version 1.70.01), J. Appl. Cryst., 1999, 32, 837-838.

⁷ G.M. Sheldrick, *SHELXL97 Program for crystal structure refinement*, University of Göttingen, Göttingen, Germany, 1997.

⁸ International Tables for Crystallography, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001, Vol. C.

⁹ K. Brandenburg and H Putz, *DIAMOND* (Release 3.1a), Crystal Impact GbR, Bonn, Germany, 2005.

- (10) G. te Velde, F.M Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. van Gisbergen, J.G. Snijders, T. Ziegler, J. Comput. Chem. 22 (2001) 931-967.
- (11) A. Klamt, G. Schüürmann, J. Chem. Soc., Perkin Trans. 2 (1993) 799-805.
- (12) A. Klamt, J. Phys. Chem. 99 (1995) 2224-2235.
- (13) A. Klamt, V. Jones, J. Chem. Phys. 105 (1996) 9972-9981.
- (14) C.C. Pye, T. Ziegler, Theor. Chem. Acc. 101 (1999) 396-408.
- (15) J.L. Pascual-Ahuir, E. Silla, I. Tuñon, J. Comput. Chem. 15 (1994) 1127-1138.