Electronic Supplementary Information

$\label{eq:steric} \begin{array}{l} Steric \ and \ electronic \ effects \ on \ arylthiolate \ coordination \ in \ the \ pseudotetrahedral \ complexes \ [(Tp^{Ph,Me})Ni-SAr] \ (Tp^{Ph,Me} = hydrotris \{3\ phenyl-5\ methyl-1\ pyrazolyl\} \ borate) \end{array}$

Tapash Deb,^a Caitlin M. Anderson,^a Swarup Chattopadhyay,^a Huaibo Ma,^a Victor G. Young, Jr.^b and Michael P. Jensen^{a,*}

^aDepartment of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA and ^bX-ray Crystallographic Laboratory, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.

Figure S1. Thermal ellipsoid plot (50% probability) of $[(Tp^{Ph,Me})Ni-SPh]$. Hydrogen atoms are omitted for clarity. Relevant bond lengths for $[(Tp^{Ph,Me})Ni-SPh]$ (Å): Ni1a–N2a, 2.005(2); Ni1a–N4a, 2.019(2); Ni1a–N6a, 2.013(2); Ni1a–S1a, 2.2224(7). Relevant bond angles for $[(Tp^{Ph,Me})Ni-SPh]$ (°): N2a–Ni1a–N4a, 90.61(8); N2a–Ni1a–N6a, 91.66(8); N4a–Ni1a–N6a, 92.86(8); N2a–Ni1a–S1a, 129.21(6); N4a–Ni1a–S1a, 131.42(6); N6a–Ni1a–S1a, 109.85(6); Ni1a–S1a–C31a, 106.63(8).

Figure S2. Space-filling diagrams (clockwise from top left) of $[(Tp^{Me,Me})Ni-SPh]$, $[(Tp^{Ph,Me})Ni-SPh]$, $[(Tp^{Ph,Me})Ni-S-2,6-Me_2C_6H_3]$ and $[(Tp^{Ph,Me})Ni-S-2,4,6-^iPr_3C_6H_2]$.

Figure S3. ¹H NMR spectrum (500 MHz, 295 K) of [(Tp^{Ph,Me})Ni–SPh] in CDCl₃.

Figure S4. ¹H NMR spectrum (500 MHz, 295 K) of [(Tp^{Ph,Me})Ni–S–2,6-Me₂C₆H₃] in CDCl₃.

Figure S5. ¹H NMR spectrum (500 MHz, 295 K) of [(Tp^{Ph,Me})Ni–S–2,4,6-Me₃C₆H₂] in CDCl₃.

Figure S6. ¹H NMR spectrum (500 MHz, 295 K) of $[(Tp^{Ph,Me})Ni-S-2,4,6-^{i}Pr_{3}C_{6}H_{2}]$ in CDCl₃.

Figure S7. ¹H NMR spectrum (500 MHz, 295 K) of $[(Tp^{Ph,Me})Ni-S-C_6H_4-4-OMe]$ in CD₂Cl₂.

Figure S8. ¹H NMR spectrum (500 MHz, 295 K) of $[(Tp^{Ph,Me})Ni-S-C_6H_4-4-Me]$ in CD₂Cl₂.

Figure S9. ¹H NMR spectrum (500 MHz, 295 K) of $[(Tp^{Ph,Me})Ni-S-C_6H_4-4-Cl]$ in CD₂Cl₂.

 $\label{eq:Figure S10. FTIR spectra (KBr pellets) of [(Tp^{Ph,Me})Ni-S-C_6H_4-4-Cl] (red) and [(Tp^{Ph,Me})Ni-Cl] (green).$

 $\label{eq:Figure S11} \textbf{Figure S11}. \ \textbf{Detail of the FTIR spectra of } [(Tp^{Ph,Me})Ni-S-C_6H_4-4-Cl] \ (red) \ and \ [(Tp^{Ph,Me})Ni-Cl] \ (green).$

Figure S12. FTIR spectra (KBr pellets) of $[(Tp^{Ph,Me})Ni-S-C_6H_4-4-Me]$ (red) and $[(Tp^{Ph,Me})Ni-Cl]$ (green).

 $\label{eq:Figure S13.} \ensuremath{\text{Detail}} \ensuremath{\text{of the FTIR spectra of } [(Tp^{Ph,Me})Ni-S-C_6H_4-4-Me] (red) and [(Tp^{Ph,Me})Ni-Cl] (green).$

Figure S14. FTIR spectra (KBr pellets) of $[(Tp^{Ph,Me})Ni-S-C_6H_4-4-OMe]$ (red) and $[(Tp^{Ph,Me})Ni-Cl]$ (green).

Figure S15. Detail of the FTIR spectra of $[(Tp^{Ph,Me})Ni-S-C_6H_4-4-OMe]$ (red) and $[(Tp^{Ph,Me})Ni-Cl]$ (green).

Figure S16. FTIR spectra (KBr pellets) of $[(Tp^{Ph,Me})Ni-S-2,4,6-^{i}Pr_{3}C_{6}H_{2}]$ (blue) and $[(Tp^{Ph,Me})Ni-Cl]$ (green).

Figure S17. Detail of the FTIR spectra of $[(Tp^{Ph,Me})Ni-S-2,4,6-^{i}Pr_{3}C_{6}H_{2}]$ (blue) and $[(Tp^{Ph,Me})Ni-Cl]$ (green).

Figure S18. UV-Vis-NIR spectra of $[(Tp^{Ph,Me})Ni-S-2,4,6-Me_3C_6H_2]$ at room temperature (295 K) in toluene (green), CH₂Cl₂ (blue) and CH₃CN (violet) solutions.

Figure S19. Variable temperature UV-Vis-NIR spectra of $[(Tp^{Ph,Me})Ni-S-2,4,6-{}^{i}Pr_{3}C_{6}H_{2}]$ obtained with increased cooling from room temperature in CH₃CN: purple, 298 K; green, 294 K; blue, 286 K; red 278 K. The dashed black spectrum was recorded on subsequent warming to 316 K. Raw data are shown, not corrected for changes in solvent density.

Figure S20. FTIR spectra (KBr pellets) of $[(\kappa^3-Tp^{Ph,Me})Ni-S-2,4,6-{}^{i}Pr_3C_6H_2]$ recrystallized from CH₂Cl₂/hexane (blue) and a mixture of $[(\kappa^3-Tp^{Ph,Me})Ni-S-2,4,6-{}^{i}Pr_3C_6H_2]$ and $[(\kappa^2-Tp^{Ph,Me})Ni(NCMe)(S-2,4,6-{}^{i}Pr_3C_6H_2)]$ •MeCN recrystallized from CH₃CN (red).

Figure S21. Least-squares overlay of the theoretical $[(k^2-Tp)Ni(NCMe)(SPh)]$ model (gray) with the experimental $[(k^2-Tp^{Ph,Me})Ni(NCMe)(S-2,4,6-{}^{i}Pr_3C_6H_2)]$ X-ray structure (color), aligned on a common basal BN₃ moiety. Hydrogen atoms are omitted for clarity.

Figure S22. Frontier molecular orbitals for the $[(k^2-Tp)Ni(NCMe)(SPh)]$ model (see Figure S21).

	X	У	z (Å)
Ni	0.06122635	0.04588338	0.06487979
В	2.76893645	-1.69213365	-0.59747702
Н	3.52403892	-2.44873163	-1.14658764
Ν	2.31456025	-0.62377946	-1.62548276
Ν	1.21127953	0.17404010	-1.47020882
Н	3.76893866	-0.90216655	-3.13220990
С	2.87850946	-0.36329143	-2.82805367
С	2.13623094	0.62060750	-3.47252421
Н	2.31617368	1.05168599	-4.45090106
С	1.09709760	0.92516206	-2.58526906
Н	0.28443444	1.63740359	-2.66979758
Ν	1.49726875	-2.50453775	-0.20100405
Ν	0.31948775	-1.90542667	0.12228405
Н	2.21371777	-4.49162811	-0.27847548
С	1.36655715	-3.84523973	-0.07990942
С	0.06511799	-4.13324240	0.32477086
Н	-0.37106661	-5.10904084	0.50889256
С	-0.55510133	-2.88180951	0.43725324
Н	-1.57479765	-2.63504401	0.71013001
Ν	3.44224546	-1.05359403	0.62430722
Ν	4.17202553	-1.86764312	1.44850798
Н	2.85869438	1.01164224	0.59467469
С	3.39284550	0.22143098	1.11293293
С	4.11833184	0.24931573	2.29608536
Н	4.29724467	1.10857592	2.93538287
С	4.57500207	-1.07861296	2.45415920
Н	5.18855439	-1.49640284	3.24889738
S	-0.16676413	2.28509939	-0.05928102
С	-1.58692984	2.84671014	0.86315136
С	-2.90060205	2.60654640	0.41383875
С	-3.99688094	3.12351713	1.10791706
Н	-5.00750628	2.93219474	0.74198667
С	-3.80207119	3.90351747	2.25522698
С	-2.50071039	4.15760893	2.70369931
Н	-2.33814960	4.77323522	3.59030093
С	-1.40171835	3.62727810	2.02011241
Н	-3.04940414	2.01621284	-0.49163641
Н	-4.65866522	4.32006755	2.78832554
Н	-0.38615106	3.81879875	2.37016982
Ν	-1.03416248	-0.02492269	1.54791722
С	-1.66694177	-0.03268866	2.52076903
С	-2.47240232	-0.02626339	3.72736872
Н	-3.21881832	-0.83171690	3.69286275
Н	-2.98808148	0.94102782	3.81367854
Н	-1.83086994	-0.17298850	4.60724466

Table S1. Coordinates for minimized structure of $[(k^2-Tp)Ni(NCMe)(SPh)]$.

no.	E/eV	f/AU	Occupied to virtual orbitals	Contribution (%)
1	1.5326	0.002044	70a → 71a 69a → 71a	0.7373 0.1657
2	1.5990	0.001799	69a → 71a 68a → 71a 70a → 71a	0.4660 0.2741 0.2378
3	1.7486	0.000967	67a → 71a 68a → 71a 69a → 71a	0.4627 0.4199 0.1092
4	2.2887	0.000217	65a → 71a 64a → 71a	0.6882 0.3088
5	2.2916	0.001272	67a → 71a 69a → 71a 68a → 71a	0.4997 0.2470 0.2321
6	2.3956	0.003823	66a → 71a	0.9103
7	2.6000	0.009209	64a → 71a 63a → 71a 65a → 71a	0.4185 0.2780 0.1995
8	2.8195	0.003812	62a → 71a	0.9041
9	2.8966	0.021493	63a → 71a 61a → 71a 64a → 71a	0.3659 0.2989 0.1321
10	3.0156	0.003505	60a → 71a	0.8859
11	3.0934	0.001358	70a → 72a 61a → 71a	0.6793 0.2309
12	3.1665	0.002089	58a → 71a 59a → 71a	0.5308 0.3388
13	3.2226	0.079702	59a → 71a 70a → 73a 61a → 71a 70a → 72a	0.3153 0.2193 0.1337 0.1121
14	3.2574	0.066696	70a → 73a 61a → 71a	0.6512 0.0976
15	3.3159	0.065843	58a → 71a 59a → 71a 61a → 71a 63a → 71a	0.3048 0.2278 0.1223 0.1043

Table S2. Calculated excitations (TD-DFT) for [(k²-Tp)Ni(NCMe)(SPh)] model.

no.	E/eV	f/AU	Occupied to virtual orbitals	Contribution(%)
16	3.3275	0.011992	69a → 72a	0.8759
17	3.4247	0.002000	70a → 74a	0.8698
18	3.4642	0.000664	69a → 73a 68a → 72a	0.5509 0.4261
19	3.4716	0.002927	68a → 72a 69a → 73a	0.5135 0.4386
20	3.5074	0.018594	70a → 75a	0.8693
21	3.6030	0.009664	57a → 71a	0.9112
22	3.6136	0.000331	68a → 73a	0.9678
23	3.6254	0.000411	69a → 74a	0.9217
24	3.6519	0.000115	67a → 72a	0.9285
25	3.6599	0.004569	70a → 76a	0.9269
26	3.7189	0.000773	69a → 75a	0.9615
27	3.7683	0.001302	68a → 74a	0.9649
28	3.7905	0.000161	67a → 73a	0.9798
29	3.8612	0.000946	68a → 75a	0.9598
30	3.8764	0.000395	69a → 76a	0.9481
31	3.9258	0.016394	66a → 73a 66a → 72a	0.4733 0.4638
32	3.9456	0.000247	67a → 74a	0.9708
33	4.0111	0.030450	70a → 77a 66a → 73a 66a → 72a	0.3775 0.2924 0.1323
34	4.0279	0.000719	68a → 76a	0.8520
35	4.0384	0.008686	67a → 75a 70a → 77a	0.6159 0.1640
36	4.0428	0.014569	67a → 75a 70a → 77a	0.3491 0.2655
37	4.0727	0.000424	65a → 72a 64a → 72a	0.7958 0.1546
38	4.1105	0.001950	70a → 78a	0.9061

no.	E/eV	f/AU	Occupied to virtual orbitals	Contribution(%)
39	4.1370	0.057805	56a → 71a 66a → 74a 64a → 72a	0.4440 0.2087 0.1008
40	4.1631	0.007740	64a → 72a 66a → 74a	0.6069 0.1786
41	4.2007	0.011276	67a → 76a	0.8362
42	4.2248	0.015310	66a → 75a	0.7896
43	4.2369	0.000715	65a → 73a 64a → 73a	0.8258 0.1490
44	4.2480	0.059177	69a → 77a 66a → 74a 56a → 71a	0.2270 0.2034 0.1014
45	4.2501	0.012447	69a → 77a 66a → 75a	0.7291 0.0994
46	4.3424	0.008714	64a → 73a 63a → 72a	0.6736 0.1222
47	4.3567	0.000314	69a → 78a	0.9666
48	4.3811	0.003717	55a → 71a 65a → 74a	0.6180 0.2906
49	4.3841	0.001351	65a → 74a 55a → 71a 64a → 74a	0.4484 0.3363 0.1628
50	4.4055	0.009455	68a → 77a	0.9341