Electronic Supplementary Information

For

First iron and cobalt(II) hexabromoclathrochelates: structural, magnetic, redox and electrocatalytic behavior.

Alexander V. Dolganov^{*a*}, Alexander S. Belov^{*a*}, Valentin V.Novikov^{*a*}, Anna V. Vologzhanina^{*a*}, Galina V. Romanenko^{*b*}, Yulia G. Budnikova^{*c*}, Genrikh E. Zelinskii^{*a*}, Michail I. Buzin^{*a*}, Yan Z. Voloshin^{*a*}

^a Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 119991 Moscow, Russia. E-mail: voloshin@ineos.ac.ru; Fax: +7 (499)135-5085

b International Tomography Center, the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia

^c A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation.

Figure S1. CV for the acetonitrile solution of the clathrochelate $Fe(Br_2Gm)_3(Bn-C_4H_9)_2$ in the anodic (a) and cathodic (b) ranges.

Figure S2. Temperature variation of the average N = C - C = N angles for the cobalt(II) hexahalogenoclathrochelates $Co(Br_2Gm)_3(Bn-C_4H_9)_2$ (black diamonds) and $Co(Cl_2Gm)_3(Bn-C_4H_9)_2$ (white squares).

Complex	$\nu_1 \left(\epsilon_1 \right)$	$\nu_2(\epsilon_2)$	$\nu_{3}\left(\epsilon_{3}\right)$	$\nu_4 \left(\epsilon_4 \right)$	$\nu_{5}\left(\epsilon_{5} ight)$	$\nu_{6}\left(\epsilon_{6}\right)$	$\nu_7(\epsilon_7)$	$\nu_{8}\left(\epsilon_{8} ight)$
$Fe(Cl_2Gm)_3(Bn-C_4H_9)_2 {}^{3a}$	259(7.9)	285(5.4)	313(2.7)			423(4.8)	453 (15)	
$Fe(Br_2Gm)_3(Bn-C_4H_9)_2$	262 (11)	264 (1.8)	290 (1.0)	350 (1.7)		428 (2.2)	448 (9.2)	459 (7.7)
Fe(I ₂ Gm) ₃ (Bn-C ₄ H ₉) ₂ ⁴	264 (6.3)	287 (7.0)			397 (3.6)	430 (5.7)	464 (19)	496 (5.4)
$Co(Cl_2Gm)_3(Bn-C_4H_9)_2$ ^{3d}		267 (20)	287 (8.4)	329 (3.1)	368 (3.2)	421 (0.64)		468 (1.6)
$Co(Br_2Gm)_3(Bn-C_4H_9)_2$	249 (7.3)	272 (21)	302 (5.3)	335 (3.7)	371 (4.0)	444 (2.0)		477 (2.2)

Table S1. Maxima of the UV-vis spectra (λ_{max}/nm , $\epsilon \cdot 10^{-3} \text{ mol}^{-1} \cdot L \cdot cm^3$) of the iron and cobalt(II) hexahalogenoclathrochelates.

Table S2. The number of inter- and intramolecular interactions of the hexahalogenoclathrochelates $Co(Br_2Gm)_3(Bn-C_4H_9)_2$ and $Co(Cl_2Gm)_3(Bn-C_4H_9)_2$ at different temperatures

Type of AZ	$c of AZ$ $Co(Br_2Gm)_3(Bn-C_4H)$								Co(Cl ₂ Gm) ₃ (Bn-C ₄ H ₉) ₂						
interaction ^a	290	281	273	200	100	70	60	290	240	210-120	90	60	30		
					Intramo	olecul	ar inte	eractions							
CoN	6	6	6	6	6	6	6	6	6	6	6	6	6		
BCo	4	4	4	4	4	4	4	4	4	4	4	4	4		
0C	24	24	24	24	24	24	24	24	24	24	24	24	24		
OB	6	6	6	6	6	6	6	6	6	6	6	6	6		
00	12	12	12	12	12	12	12	12	12	12	12	12	12		
ON	22	22	22	22	22	22	22	22	22	22	22	22	21		
NN	20	20	20	20	20	20	20	20	20	20	20	20	20		
NB	12	12	12	12	12	12	12	12	12	12	12	12	12		
NC	18	14	18	18	18	18	18	18	18	18	18	18	18		
СВ	6	6	6	6	6	6	6	6	6	6	6	6	6		
ВН	16	16	16	16	16	16	16	16	16	16	16	16	16		
HalC	14	18	14	14	18	18	18	14	14	18	18	18	18		
HalHal	6	6	6	6	6	6	6	6	6	6	6	6	6		
HalH	8	8	8	8	8	8	8	8	8	8	8	8	8		
HalO	12	12	12	12	12	12	12	12	12	12	12	12	12		
ОН	28	28	28	30	28	28	28	28	28	28	28	28	28		
CC	17	17	17	17	13	17	17	17	17	17	17	17	17		
СН	86	86	86	86	90	86	86	90	90	90	90	90	90		
НН	88	88	88	84	88	88	92	88	88	88	88	88	86		
					Intermo	olecul	ar inte	eractions							
HalH	92	88	80	87	76	80	84	80	80	80	80	80	78		
HalO	20	20	20	20	20	20	20	20	20	20	20	20	22		
HalHal	22	22	22	22	22	22	22	22	22	22	18	18	20		
HalN	20	20	20	20	20	20	20	12	12	12	12	12	14		
HalC	16	16	16	16	16	16	16	16	16	16	16	16	20		
НН	46	46	46	46	42	46	46	42	42	42	42	42	44		
НО	40	40	48	42	56	52	48	52	52	52	52	52	52		
СН	56	56	52	52	56	56	56	52	52	52	52	52	52		
NH	32	32	32	32	32	32	32	32	32	32	32	32	32		
СоН	4	4	4	4	4	4	4	4	4	4	4	4	4		
CC	0	0	0	8	8	4	4	0	4	4	4	4	6		

^a The interacting pairs are denoted as A...Z. The full details of such procedure a comparison of the conformation polymorphs are described in ref. 19.