Supporting Information

Four tetrazolate-based 3D frameworks with diverse subunits directed by inorganic

anions or azido coligand: hydrothermal syntheses, crystal structures, and magnetic

behaviors

Zhao-Jun Hou,^a Zhong-Yi Liu,^a Ning Liu,^a En-Cui Yang,^{a,*} and Xiao-Jun Zhao^{a, b,*}

^a College of Chemistry, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, P.R. China

^b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China

Cu(1)–N(6)	1.991(3)	Cu(1)–O(5)	2.056(2)
Cu(1)–O(3)	2.252(2)	Cu(2)–O(1)	1.968(2)
Cu(2)–O(5)	2.004(2)	Cu(2)–N(8) ^{#2}	2.009(3)
Cu(2)–N(4) ^{#3}	2.013(3)	Cu(2)–N(7) ^{#1}	2.414(3)
Cu(2)–N(2)	2.434(3)	Cu(3)–N(1)	1.946(3)
Cu(3)–N(5)	1.958(3)	Cu(3)–O(2) ^{#4}	1.991(2)
Cu(3)–O(5)	2.028(2)	Cu(3)–O(2)	2.256(2)
N(6)-Cu(1)-O(5)	88.01(10)	N(6) ^{#1} -Cu(1)-O(5)	91.99(10)
N(6)-Cu(1)-O(5) ^{#1}	91.99(10)	$N(6)^{\#1}$ -Cu(1)-O(5) ^{#1}	88.01(10)
N(6)-Cu(1)-O(3)	89.69(10)	N(6) ^{#1} -Cu(1)-O(3)	90.30(10)
O(5)–Cu(1)–O(3)	85.94(8)	O(5) ^{#1} -Cu(1)-O(3)	94.06(8)
N(6)-Cu(1)-O(3)#1	90.31(10)	$N(6)^{\#1}$ -Cu(1)-O(3) $^{\#1}$	89.70(10)
O(5)-Cu(1)-O(3) ^{#1}	94.06(8)	$O(5)^{\#1}$ -Cu(1)-O(3) $^{\#1}$	85.94(8)
O(1)–Cu(2)–O(5)	92.24(9)	O(1)-Cu(2)-N(8) ^{#2}	85.70(10)
O(5)-Cu(2)-N(4)#3	94.13(10)	O(1)-Cu(2)-N(7) ^{#1}	89.37(9)
N(8)#2-Cu(2)-N(4)#3	88.13(11)	$N(8)^{#2}$ -Cu(2)-N(7) ^{#1}	95.11(10)
O(5)-Cu(2)-N(7) ^{#1}	87.77(9)	O(1)-Cu(2)-N(2)	98.08(10)
$N(4)^{#3}$ -Cu(2)-N(7) ^{#1}	87.12(10)	N(8)#2-Cu(2)-N(2)	90.97(10)
O(5)–Cu(2)–N(2)	86.45(9)	N(4)#3-Cu(2)-N(2)	86.08(10)
N(5)-Cu(3)-O(5)	90.32(10)	N(1)-Cu(3)-O(2)#4	92.37(10)
N(5)-Cu(3)-O(2)#4	88.11(10)	N(1)-Cu(3)-O(5)	91.72(10)
N(1)-Cu(3)-O(2)	103.01(10)	N(5)-Cu(3)-O(2)	92.59(10)
O(2) ^{#4} -Cu(3)-O(2)	78.91(9)	O(5)–Cu(3)–O(2)	91.68(8)

Table S1 Selected bond lengths /Å and angles /° for 1^{*a*}

^{*a*} Symmetry codes: ^{#1} 1 - x, -y, 1 - z; ^{#2} x - 1, y, z; ^{#3} 1/2 - x, y - 1/2, 3/2 - z; ^{#4} 1 - x, 1 - y, 1 - z.

Table S2 Selected bond lengths /Å and angles /° for 2^{a}

Cu(1)–N(2)	2.022(3)	Cu(1)–Cl(1)	2.6050(16)
Cu(2)-N(4)#4	2.009(4)	Cu(2)–N(1)	2.056(4)
Cu(2)–Cl(1)	2.4743(16)		
N(2) ^{#1} -Cu(1)-N(2)	87.6(2)	N(2)-Cu(1)-N(2) ^{#2}	92.4(2)
$N(2)^{#1}$ - $Cu(1)$ - $N(2)^{#3}$	92.4(2)	N(2)#2-Cu(1)-N(2)#3	87.6(2)
N(2) ^{#1} -Cu(1)-Cl(1)	87.79(10)	N(2)–Cu(1)–Cl(1)	87.79(10)
N(2) ^{#2} -Cu(1)-Cl(1)	92.21(10)	N(2) ^{#3} -Cu(1)-Cl(1)	92.21(10)
N(2) ^{#1} -Cu(1)-Cl(1) ^{#3}	92.21(10)	N(2)-Cu(1)-Cl(1)#3	92.21(10)
N(2) ^{#2} -Cu(1)-Cl(1) ^{#3}	87.79(10)	N(2) ^{#3} -Cu(1)-Cl(1) ^{#3}	87.79(10)
$N(4)^{#4}$ -Cu(2)-N(4) ^{#5}	91.3(2)	N(4)#4-Cu(2)-N(1)	89.68(15)
N(4) ^{#5} -Cu(2)-N(1) ^{#1}	89.68(15)	N(1)-Cu(2)-N(1) ^{#1}	87.7(2)
N(4)#4-Cu(2)-Cl(1)	96.72(10)	N(4)#5-Cu(2)-Cl(1)	96.72(10)
N(1)–Cu(2)–Cl(1)	92.67(10)	N(1) ^{#1} -Cu(2)-Cl(1)	92.67(10)

^{*a*} Symmetry codes: ^{#1} x, y, 1 - z; ^{#2} 1 - x, 1 - y, z; ^{#3} 1 - x, 1 - y, 1 - z; ^{#4} 3/2 - x, y + 1/2, 1/2 - z; ^{#5} 3/2 - x,

у	+	1/2,	Ζ	+	1/2.

Table S3 Selected bond lengths /Å and angles /° for 3^{a}

1.981(3)	Cu(1)–N(3) ^{#2}	1.986(3)
1.991(3)	Cu(1)–N(5) ^{#3}	2.000(2)
2.204(3)		
86.53(11)	N(3) ^{#2} -Cu(1)-N(5)	93.10(11)
91.38(11)	N(3)#2-Cu(1)-N(5)#3	86.07(10)
99.92(11)	N(3) ^{#2} -Cu(1)-N(1)	93.13(11)
96.04(12)	N(5) ^{#3} -Cu(1)-N(1)	96.82(12)
	1.981(3) 1.991(3) 2.204(3) 86.53(11) 91.38(11) 99.92(11) 96.04(12)	$1.981(3)$ $Cu(1)-N(3)^{#2}$ $1.991(3)$ $Cu(1)-N(5)^{#3}$ $2.204(3)$ $X(3)^{#2}-Cu(1)-N(5)$ $86.53(11)$ $N(3)^{#2}-Cu(1)-N(5)^{#3}$ $91.38(11)$ $N(3)^{#2}-Cu(1)-N(5)^{#3}$ $99.92(11)$ $N(3)^{#2}-Cu(1)-N(1)$ $96.04(12)$ $N(5)^{#3}-Cu(1)-N(1)$

^{*a*} Symmetry codes: ^{#1} 1/2 - x, 1 - y, z - 1/2; ^{#2} - x, y + 1/2, 1/2 - z; ^{#3} x - 1/2, 3/2 - y, -z.

Table S4 Selected bond lengths /Å and angles /° for 4^{a}

Cu(1)–N(5) ^{#1}	2.100(7)	Cu(2)–N(6)	2.096(7)
Cu(1)–N(7)	2.134(6)	Cu(2)–N(4)	2.120(6)
Cu(1)–N(3)	2.142(6)		
N(5) ^{#1} -Cu(1)-N(7)	89.8(3)	N(5) ^{#2} -Cu(1)-N(7)	90.2(3)
N(5)#1-Cu(1)-N(7)#3	90.2(3)	N(5)#2-Cu(1)-N(7)#3	89.8(3)
N(5) ^{#1} -Cu(1)-N(3) ^{#3}	89.8(2)	N(5)#2-Cu(1)-N(3)#3	90.2(2)
N(7)-Cu(1)-N(3)#3	89.9(3)	N(7) ^{#3} -Cu(1)-N(3) ^{#3}	90.1(3)
N(5) ^{#1} -Cu(1)-N(3)	90.2(2)	N(5) ^{#2} -Cu(1)-N(3)	89.8(2)
N(7)-Cu(1)-N(3)	90.1(3)	N(7)#3-Cu(1)-N(3)	89.9(3)
N(6)#4-Cu(2)-N(6)#2	88.4(3)	N(6)#4-Cu(2)-N(6)	88.4(3)
N(6)#2-Cu(2)-N(6)	88.4(3)	N(6)#4-Cu(2)-N(4)#4	90.5(2)
N(6)#2-Cu(2)-N(4)#4	90.0(3)	N(6)#2-Cu(2)-N(4)#2	90.5(3)
N(6)-Cu(2)-N(4)#2	90.0(3)	$N(4)^{#4}$ -Cu(2)-N(4) ^{#2}	91.1(2)
N(6)#4-Cu(2)-N(4)	90.0(3)	N(6)-Cu(2)-N(4)	90.5(3)
N(4)#4-Cu(2)-N(4)	91.1(2)	$N(4)^{\#2}$ -Cu(2)-N(4)	91.1(2)

^{*a*} Symmetry codes: ^{#1} x - y, x, 2 - z; ^{#2} 1 - x + y, 1 - x, z; ^{#3} 1 - x, 1 - y, 2 - z; ^{#4} 1 - y, x - y, z.

Fig. S1. Simulated (purple) and experimental (blue) PXRD patterns for 1 (a)-4 (d).

Fig. S2. The connection modes of tz^- ligand and Cu2 ion in the two different planes of 2.

Fig. S3. The dihedral angles between the Cu^{II}₅ plane and the μ_3 -/ μ_4 -tz⁻ planes in 1.