Supporting Information

Inter–Ligand Azo (N=N) Unit Formation and Thereafter Stabilization of A Co(II)–Diradical Complex *via* Metal–to– Ligand $d\pi$ – $p\pi$ back donation: Synthesis, Characterization, and Theoretical Study**

Richa Rakshit,^{*a*} Samir Ghorai,^{*a*} Amrit Sarmah,^{*b*} Archana Tiwari,^{*c*} Ram Kinkar Roy,^{*b*} and Chandan Mukherjee^{*a}

*Corresponding address:

Dr. Chandan Mukherjee, Department of Chemistry, Indian Institute of Technology, Guwahati, 781039, Assam, India

Email: <u>cmukherjee@iitg.ernet.in</u>

Phone No. +91-361-258-2327

Fax: +91-361-258-2349

Contents	Page
Material Physical Methods and Computational methods	S3
Experimental Section: Synthesis and Characterization of H ₃ Rich ^{N3} , and 1	S4
Selected bond distances (Å) and bond angles (°) for 1	S5
Crystallographic data and structure refinement for 1 (Table 2)	S6
X-ray and computational bond distance (selected) comparison data (Table 3)	S6
Parameters for the optimized geometry	S7-S8
A mechanistic proposal is shown for the formation of 1 , and Reference	S9

Materials:

All the chemicals and solvents were obtained from commercial sources and were used as supplied, unless noted otherwise. 3,5–di–*tert*–butylcatechol, was purchased from Sigma–Aldrich. Solvents were obtained from Merck (India). phthalic anhydride was purchased from Merck (India).

Physical Methods:

X-ray crystallographic data were collected using Super Nova, Single source at offset, Eos diffractometer. Structures were solved by direct methods using SHELXS-97 and refined with full-matrix least squares on F^2 using SHELXL-97. All the non-hydrogen atoms were refined anisotropically.

IR spectra were recorded on Perkin Elmer Instrument at normal temperature making KBr pellet grinding the sample with KBr (IR Grade). UV–vis/NIR spectra were recorded on Perkin Elmer, Lamda 750, UV/VIS/NIR spectrometer preparing a known concentration of the samples in HPLC Grade CH₂Cl₂ at room temperature using cuvette of 1 cm width. EPR spectra were measured on X–Band Microwave Unit, JES–FA200 ESR spectrometer at 77 K. Mass spectral data were obtained from either HRMS or QTOF MS Spectrometer. Variable-temperature magnetic susceptibility measurements were performed using SQUID magnetometer at 0.1T.

Experimental Section:

Synthesis of 2-azidoaniline has already been reported.¹

Synthesis of $[C_{20}H_{26}N_4O]$, $H_2Rich(AP)^{N3}$: To a solution of 3,5–di–*tert*–butylcatechol (2.58 g, 11.64 mmol) and 2-azidoaniline (1.56g ,11.64 mmol) in hexane (25 mL), Et₃N (0.05 mL) was added and the resulting solution was stirred for 48 h at room temperature (30 °C). During this period a brown precipitate appeared which was recrystallized from methanol giving colourless crystalline solid. This solid was washed twice with methanol (5 mL) and then, dried under high vaccum. Yield: 2.37 g, 60%. FTIR (KBr pellet cm⁻¹): 3424, 3348, 2955, 2901, 2867, 2131, 2093, 1592, 1501, 1480, 1419, 1359, 1293, 1218, 1197, 1146, 1117, 1090, 1042, 969, 882, 825, 806, 764, 744, 610. ¹H NMR (CDCl₃, 399.85 MHz): δ 7.23 (d, *J* = 2.4 Hz, 1H), 7.13 (dd, *J* = 8.0, 1.2 Hz, 1H), 6.98–6.94 (m, 2H), 6.87 (td, *J* = 7.6, 1.6 Hz, 1H), 6.42 (dd, *J* = 8.0, 1.2 Hz, 1H), 6.28 (s, 1H), 5.38 (s, 1H), 1.44 (s, 9H), 1.26 (s, 9H) ppm.¹³C NMR (CDCl₃, 100.55 MHz): δ 149.8, 142.5, 138.6, 135.6, 127.1, 126.2, 125.9, 122.5, 121.8, 120.0, 118.2, 114.7, 35.2, 34.6, 31.8, 29.7 ppm. Anal. Calcd for C₂₀H₂₆N₄O: C, 70.96; H, 7.75; N, 16.56. Found: C, 71.49; H, 7.86; N, 16.55. ESI–MS (+) *m/z* for [C₂₀H₂₆N₄O+H]⁺: calcd, 339.2179; found, 339.2175.

Synthesis of $[C_{40}H_{49}ClCoN_4O_2]$, 1: To a solution of $H_2Rich(AP)^{N3}$ (0.338 g, 1 mmol) in acetonitrile (10 mL), $CoCl_2 \bullet 6H_2O$ (0.238 g, 1 mmol) was added followed by addition of Et₃N (0.2 mL). The resulted solution was stirred for 2 h at room temperature under air. A brownblack precipitate appeared which was washed with acetonitrile (5 mL) and then with diethylether (5 mL). Recrystallization of the solid from a dichloromethane/acetonitrile (5:1) solvent mixture afforded a crystalline compound that was suitable for single crystal X-ray diffraction measurement. Yield: 75 mg, 21%. FTIR (KBr pellet cm⁻¹): 3243, 2955, 2905, 2867, 1583, 1522, 1479, 1385, 1359, 1310, 1248, 1201, 1099, 1028, 996, 912, 755. Anal. Calcd for $C_{40}H_{49}ClCoN_4O_2 \bullet 1.5H_2O$: C, 65.01; H, 7.10; N, 7.58. Found: C, 64.70; H, 6.71; N, 7.60. ESI–MS (+) *m/z* for [$C_{40}H_{49}CON_4O_2$]⁺: calcd, 676.3187; found, 676.3159.

Table 1 Selected bond distances (Å) and bond angles (°) for 1 $[C_{40}H_{40}C C_{0}N_{4}O_{2}]$						
Co1–N1	1.861(2)	N1-Co1-N4	161.09(11)			
Co1–N2	1.849(2)	N1-Co1-O1	83.06(10)			
Co1–N4	1.862(2)	N1-Co1-Cl1	101.55(8)			
Co1-01	1.890(2)	N1-C1-C2	110.1(2)			
Co1–Cl1	2.3217(10)	N2-Co1-N1	84.88(10)			
N1-C1	1.355(4)	N2-Co1-N4	93.00(11)			
N1-C7	1.401(4)	N2-Co1-O1	163.62(10)			
N2-C12	1.434(4)	N2-Co1-Cl1	94.09(8)			
N2-N3	1.282(3)	N2-N3-C13	119.0(3)			
N3-C13	1.365(4)	N3-N2-Co1	132.5(2)			
N4-C18	1.361(4)	N3-C13-C18	127.0(3)			
N4-C19	1.449(4)	N4-Co1-O1	94.82(10)			
O1-C2	1.302(3)	N4-Co1-Cl1	97.34(8)			
O2–C24	1.364(4)	N4-C18-C13	121.9(3)			
C1-C6	1.411(4)	O1-Co1-Cl1	99.15(7)			
C2-C1	1.434(4)	O1-C2-C1	116.6(3)			
C2–C3	1.423(4)	C2-O1-Co1	113.77(18)			
C3–C4	1.378(4)	C1-N1-Co1	116.31(19)			
C5–C4	1.421(4)	C7-N1-Co1	114.22(19)			
C5–C6	1.357(4)	C7-C12-N2	113.5(3)			
С7-С8	1.391(4)	C12-C7-N1	112.2(2)			
C8–C9	1.374(4)	C12-N2-Co1	112.89(18)			
C9-C10	1.383(5)	C18-N4-Co1	124.0(2)			
C11-C10	1.379(4)	N1-Co1-N4	161.09(11)			
C12–C7	1.401(4)	N1-Co1-O1	83.06(10)			
C12-C11	1.372(4)	N1-Co1-Cl1	101.55(8)			
C13-C14	1.410(4)	N1-C1-C2	110.1(2)			
C13-C18	1.426(4)	N2-Co1-N1	84.88(10)			
C14–C15	1.353(4)	N2-Co1-N4	93.00(11)			
C15-C16	1.390(5)	N2-Co1-O1	163.62(10)			
C17–C16	1.361(5)	N2-Co1-Cl1	94.09(8)			
C18-C17	1.429(4)	N2-N3-C13	119.0(3)			
C19–C20	1.379(4)	N3-N2-Co1	132.5(2)			
C19–C24	1.392(4)	N3-C13-C18	127.0(3)			
C20-C21	1.378(4)	N4-Co1-O1	94.82(10)			
C21–C22	1.391(5)	N4-Co1-Cl1	97.34(8)			
C22–C23	1.388(5)	N4-C18-C13	121.9(3)			
C24–C23	1.401(4)	O1-Co1-Cl1	99.15(7)			
C7-C12-N2	113.5(3)	O1-C2-C1	116.6(3)			
C12-C7-N1	112.2(2)	C2-O1-Co1	113.77(18)			
C12-N2-Co1	112.89(18)	C1-N1-Co1	116.31(19)			
C18-N4-Co1	124.0(2)	C7-N1-Co1	114.22(19)			

Empirical formula	$C_{40}H_{49}ClCoN_4O_2$
Formula weight	712.21
CCDC Number	CCDC 990520
Crystal habit, colour	block/ brown
Crystal size, mm ³	0.34 X 0.28 X 0.22
Temperature, T	293(2) K
Wavelength, λ (Å)	0.71073
Crystal system	triclinic
Space group	'P -1'
Unit cell dimensions	a = 9.3974(4) Å
	b = 11.8652(4) Å
	c = 17.5161(10) Å
	$\alpha = 101.422(4)^{\circ}, \gamma = 89.970(3)^{\circ}, \beta =$
	92.112(4)°
Volume, $V(\text{Å}^3)$	1913.06(15)
Ζ	2
Calculated density, Mg·m ⁻³	1.236
Absorption coefficient, μ (mm ⁻¹)	0.556
<i>F</i> (000)	754
θ range for data collection	2.92° to 25.00°
Limiting indices	$-11 \le h \le 11, -14 \le k \le 14, -20 \le l \le 11$
Reflection collected / unique	12293/ 6716 [<i>R</i> (int) = 0.0306]
Completeness to θ	99.8% (θ = 25.00°)
Max. and min. transmission	0.885/ 0.830
Refinement method	'SHELXL-97 (Sheldrick, 1997)'
Data / restraints / parameters	6716 / 0 / 446
Goodness–of–fit on F^2	1.023
<pre>Final R indices [I>2sigma(I)]</pre>	R1 = 0.0499, wR2 = 0.1054
<i>R</i> indices (all data)	R1 = 0.0753, wR2 = 0.1198
Largest diff. peak and hole	0.462 and -0.268 $e \cdot Å^{-3}$

Table 2. Crystallographic data and structure refinement parameters for 1, $[C_{40}H_{40}CIC_0N_4O_2]$.

Table 3. Comparison of optimized bond distances (Å) (some selected ones) with those found by X-ray crystallographic measurement for 1.

Bond Distance	X-ray crystal structure	Calculated
N2-N3	1.282(3)	1.28
N2-C12	1.434(4)	1.40
N4–C18	1.361(4)	1.34
N1-C1	1.355(4)	1.33
N1-C7	1.401(4)	1.38
N3-C13	1.365(4)	1.34
O1–C2	1.302(3)	1.27

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	¥	Z
1	27	0	0.449281	1.332322	-0.10978
2	17	0	0.380507	1.545486	-2.421072
3	8	0	0.545159	-0.609844	-0.199039
4	7	0	0.738238	3.144721	0.24552
5	7	0	-1.406761	1.471321	0.23681
6	7	0	2.317434	1.172194	0.03622
7	8	0	-2.541828	0.374875	-2.10225
8	7	0	-0.076354	4.116862	0.41823
9	6	0	-1.403336	3.912032	0.42719
10	6	0	2.097537	3.487052	0.18894
11	6	0	2.978414	2.385781	0.04143
12	6	0	1.737931	-1.050974	-0.16975
13	6	0	-2.080288	2.628523	0.34762
14	6	0	-2.185436	0.270820	0.26981
15	6	0	-2.417663	-0.348419	1.494519
16	1	0	-1.944641	0.084665	2.37222
17	6	0	2.803229	-0.073921	0.064492
18	6	0	4.349964	2.636112	-0.15528
19	1	0	5.029624	1.826197	-0.38347
20	6	0	2.587106	4.795503	0.227858
21	1	0	1.887259	5.613642	0.34984
22	6	0	4.434437	-1.845357	0.25103
23	6	0	-3.510502	2.673024	0.43974
24	1	0	-4.055317	1.738319	0.391865
25	6	0	-3.265273	-1.452907	1.598574
26	6	0	-2.160433	5.112855	0.579012
27	l	0	-1.590982	6.035512	0.636380
28	6	0	1.03/64Z	-3.466096	-0./93130
29	6	0	5.826995	-2.398815	0.55899.
3U 21	6	0	2.088600	-2.442039	-0.363030
21	0	0	2 602665	-2.709743	-0.139340
32	1 6	0	2 766596	-3.000371	-0.240430
34	6	0	4 130188	-0.220903	0 329204
35	1	0	4.130100	0.205896	0.52520
36	6	0	-3 524552	5 101062	0 64350
37	1	0	-4 087395	6 023202	0 74987
38	6	0	4 824705	3 938108	-0 125939
39	1	0	5 882835	4 124226	-0 28616
40	÷	0	3.949517	5.013225	0.08631
41	1	0	4.336413	6.028176	0.11211
42	- 6	0	-3.867650	-1.901915	0.41668
43	1	0	-4.542133	-2.746155	0.47451
44	6	0	1.642446	-4.867100	-0.96058
45	1	0	2.434215	-4.887974	-1.71937
46	- 1	0	0.857772	-5.557495	-1.28894
47	1	0	2.049138	-5.259023	-0.01999
48	6	0	-3.374755	-2.302028	-3.16043
49	1	0	-3.908690	-2.648758	-4.05471
50	1	0	-2.773955	-3.137503	-2.78272
51	1	0	-2.700747	-1.494502	-3.451659
52	6	0	-3.653730	-1.324777	-0.84168
53	6	0	-4.194582	3.852920	0.57257

Table 4. Parameters for the optimized geometry of	-	1	L.	•
--	---	---	----	---

54	1	0	-5.280456	3.825710	0.624796
55	6	0	-4.386681	-1.837289	-2.094123
56	6	0	6.815604	-1.298057	0.963903
57	1	0	6.489802	-0.768395	1.866791
58	1	0	6.960141	-0.563853	0.162411
59	1	0	7.793116	-1.743440	1.179531
60	6	0	-5.271027	-0.711826	-2.671542
61	1	0	-6.024791	-0.397406	-1.939047
62	1	0	-5.799285	-1.072005	-3.563718
63	1	0	-4.677460	0.160132	-2.954284
64	6	0	-3.542647	-2.080210	2.972212
65	6	0	0.451829	-3.034307	-2.153391
66	1	0	-0.026310	-2.054333	-2.096833
67	1	0	-0.299514	-3.763488	-2.478679
68	1	0	1.235002	-2.993064	-2.919690
69	6	0	6.383198	-3.107370	-0.693719
70	1	0	7.381289	-3.510350	-0.483474
71	1	0	6.467880	-2.409287	-1.534229
72	1	0	5.752102	-3.942951	-1.014343
73	6	0	-0.084146	-3.554069	0.260520
74	1	0	0.319671	-3.866498	1.231653
75	1	0	-0.823751	-4.300835	-0.052698
76	1	0	-0.597351	-2.599115	0.385888
77	6	0	-5.304740	-3.028899	-1.781741
78	1	0	-6.090838	-2.770409	-1.062171
79	1	0	-4.747698	-3.889167	-1.391171
80	1	0	-5.799346	-3.350905	-2.705588
81	6	0	5.728030	-3.408188	1.721511
82	1	0	6.718072	-3.824944	1.942531
83	1	0	5.061366	-4.245046	1.487658
84	1	0	5.352376	-2.923823	2.630033
85	6	0	-2.218838	-2.515641	3.628933
86	1	0	-1.711741	-3.273776	3.021879
87	1	0	-2.407231	-2.943122	4.622128
88	1	0	-1.530103	-1.673200	3.754537
89	6	0	-4.234475	-1.038379	3.874207
90	1	0	-3.612874	-0.146597	4.010783
91	1	0	-4.437030	-1.461195	4.866700
92	1	0	-5.188301	-0.717054	3.439796
93	6	0	-4.454519	-3.311610	2.879422
94	1	0	-5.441390	-3.060608	2.473534
95	1	0	-4.608439	-3.732076	3.880348
96	1	0	-4.015599	-4.097276	2.253250
97	1	0	-1.689469	0.869340	-2.096502

Scheme 1. A mechanistic proposal is shown for the formation of 1.

Reference:

1) M. Shen, T. G. Driver, Org. Lett., 2008, 15, 3367.