Supplementary Information for Self-Enhanced Electrogenerated Chemiluminescence of Ruthenium (II) Complexes Conjugated with Schiff Bases

Panpan Li,^{a,b} Zhaoyu Jin,^a Meilian Zhao,^a Yanxue Xu,^a Yong Guo^a and Dan Xiao^{*,a,c}

Fig. S1 ECL spectrum was obtained via CV between -1.4 V and 1.3 V in 0.2 M phosphate buffer solution (pH = 7.2) cotaining 90 μ M Ru-PBI.

Fig. S2. a), c), e), g) and i) were obtained based on step potential chronoamperometry to count coulombs (integral areas of curves), respectively from 0.2 M PBS of 4.5 μ M Ru-BP, Ru-PBI-M, Ru-BP with addition of 16 μ M TPrA, Ru-PBI-H and Ru-BP with addition of 36 μ M. b), d), f), h) and j) were corresponding ECL intensitys of a), c), e), g) and i) (integral areas of curves). The applied potential of step potential chronoamperometry is 1.2 V and the pulse time is 1.0 s. All data were gained at room temperature (25 °C)

Curves	Integral areas	
$a(Q^0)$	1.88	
$c(Q^1)$	1.81	
$e(Q^2)$	3.49	
$g(Q^3)$	2.22	
i (Q ⁴)	3.71	
b (I ⁰)	79.15	
d (I ¹)	1113.8	
$f(I^2)$	2131.5	
h (I ³)	4506.5	
j (I ⁴)	7374.5	

 Table S1. The values of integral areas separately.

Complexes	Ru-BP	Ru-PBI	Ru-PBI-Co
$E^{ox \theta}(V)$	1.447	0.847	0.917
E _{HOMO} ^a (eV)	-5.947	-5.347	-5.417
E ^{red θ} (V)	-1.123	-0.853	-0.973
E _{LUMO} ^b (eV)	-3.377	-3.647	-3.527
$E_{g}^{c}(eV)$	2.57	1.70	1.89
E _{HOMO} ^d (eV)	-5.967	-2.299	—
E _{LUMO} ^d (eV)	-2.492	-1.465	—
E_{g}^{d} (eV)	3.475	0.834	_

Table S2. Energy band structures of Ru-BP, Ru-PBI and Ru-PBI-M-Co.

 a $\left|E_{HOMO}\right|$ = $E^{ox\theta}$ + 4.5eV , E_{HOMO} < 0.

^b $|E_{LUMO}| = E^{red\theta} + 4.5 eV$, $E_{LUMO} < 0$. Where $E^{ox \theta}$ and $E^{red \theta}$ are the first oxidation potentials and the first reduction potentials versus NHE.

^c $E_g = E_{LUMO} - E_{HOMO}$.

^d theoretical values obtained via Gaussian09 package.

Table 55. Composition (70) of nonner molecular orbitals of Ru Di and Ru TDi.						
Complexes	НОМО		LUMO			
	Ru	bpy	PBI	Ru	bpy	PBI
Ru-BP	80.27	19.73	_	1.229	98.77	—
Ru-PBI	0.02261	0.03739	99.94	7.603	33.65	58.75

Table S3. Composition (%) of frontier molecular orbitals of Ru-BP and Ru-PBI.

Coordinates of	f Ru-BP:		
Ν	7.7496	-1.7454	16.8376
С	8.6678	-2.6395	16.3656
С	8.9443	-3.8121	17.0647
Н	9.5678	-4.4164	16.733
С	7.1352	-2.0213	18.0011
Н	6.5105	-1.4163	18.3265
С	8.2924	-4.0755	18.2489
Н	8.4608	-4.8625	18.7128
С	7.3889	-3.1611	18.7359
Н	6.9577	-3.3076	19.5484
Ν	9.0149	1.0149	16.8376
С	9.33	2.2572	16.3656
С	10.2073	3.0829	17.0647
Н	10.4189	3.9251	16.733
С	9.561	0.6208	18.0011
Н	9.3494	-0.2227	18.3265
С	10.7614	2.65	18.2489
Н	11.3588	3.1893	18.7128
С	10.4212	1.4104	18.7359
Н	10.7637	1.1102	19.5484
Ν	5.9917	0.7305	16.8376
С	4.7583	0.3823	16.3656
С	3.6046	0.7292	17.0647
Н	2.7694	0.4914	16.733
С	6.06	1.4005	18.0011
Н	6.8963	1.639	18.3265
С	3.7024	1.4255	18.2489
Н	2.9367	1.6732	18.7128
С	4.9461	1.7507	18.7359
Н	5.0348	2.1974	19.5484
Ν	9.0149	-1.0149	14.6549
С	9.33	-2.2572	15.1269
С	10.2073	-3.0829	14.4278
Н	10.4189	-3.9251	14.7595
С	9.561	-0.6208	13.4914
Н	9.3494	0.2227	13.166
С	10.7614	-2.65	13.2436
Н	11.3588	-3.1893	12.7797
С	10.4212	-1.4104	12.7566
Н	10.7637	-1.1102	11.9441

Table S4. The coordinates of the optimized structures for Ru-BP and Ru-PBI (the geometries were optimized at the B3LYP/6-31G level in Gaussian09 package).

Ν	5.9917	-0.7305	14.6549
С	4.7583	-0.3823	15.1269
С	3.6046	-0.7292	14.4278
Н	2.7694	-0.4914	14.7595
С	6.06	-1.4005	13.4914
Н	6.8963	-1.639	13.166
С	3.7024	-1.4255	13.2436
Н	2.9367	-1.6732	12.7797
С	4.9461	-1.7507	12.7566
Н	5.0348	-2.1974	11.9441
Ν	7.7496	1.7454	14.6549
С	8.6678	2.6395	15.1269
С	8.9443	3.8121	14.4278
Н	9.5678	4.4164	14.7595
С	7.1352	2.0213	13.4914
Н	6.5105	1.4163	13.166
С	8.2924	4.0755	13.2436
Н	8.4608	4.8625	12.7797
С	7.3889	3.1611	12.7566
Н	6.9577	3.3076	11.9441
Ru	7.5854	0	15.7462

Coordinates of Ru-PBI:

Coordinates of	f Ru-PBI:		
С	-0.63167	3.47298	0.17784
С	0.6307	2.9154	0.06569
С	0.7593	1.50523	-0.05682
С	-0.43448	0.74299	-0.06764
С	-1.77809	2.65132	0.15994
С	2.04004	0.85111	-0.15063
С	-0.38812	-0.67238	-0.23472
С	0.86241	-1.34424	-0.3675
С	2.09779	-0.57164	-0.26726
С	0.79453	-2.73269	-0.66038
Н	1.69625	-3.30059	-0.83647
С	-0.44368	-3.36699	-0.75435
С	-1.6239	-2.65434	-0.54451
Н	-0.75707	4.54538	0.2778
Н	1.53809	3.5082	0.06207
Н	-2.77642	3.05882	0.24266
Н	-0.49778	-4.42406	-0.98973
Н	-2.59861	-3.11925	-0.58499
N	-1.60312	-1.31825	-0.28875
N	-1.68422	1.31592	0.02773
С	-5.13442	-2.38164	0.77425
С	-6.1628	-3.29415	0.59576
С	-6.80318	-3.35908	-0.66659
С	-6.37612	-2.52441	-1.68328
С	-5.31351	-1.61119	-1.46928
Н	-4.62606	-2.28059	1.72437
Н	-6.47313	-3.92744	1.41798
Н	-7.61529	-4.05789	-0.83563
H	-6.84782	-2.57225	-2.65795
С	-4.73144	-0.77072	-2.47358
С	-5.15097	-0.69828	-3.82612
С	-4.44558	0.06091	-4.74188
Н	-6.02863	-1.25076	-4.1416
С	-2.92602	0.69378	-2.97911
С	-3.2901	0.7625	-4.31462
H	-4.76825	0.11244	-5.77612
Н	-2.06551	1.23033	-2.60065
Н	-2.69965	1.35016	-5.00692
С	-5.97496	2.40345	2.23806
С	-4.98496	1.47717	1.815
С	-5.47005	2.02982	-0.4455
С	-6.4451	2.94012	-0.06796
C	-6 70047	3 12942	1 3135

Н	-6.15342	2.54395	3.29763
Н	-5.24118	1.84992	-1.48727
Н	-7.00007	3.48267	-0.82353
Н	-7.45432	3.83727	1.6411
С	-4.16385	0.69616	2.69397
С	-4.25249	0.70136	4.1094
С	-2.34552	-0.82865	2.83926
С	-3.38162	-0.0544	4.87295
Н	-5.01166	1.30464	4.59308
С	-2.39161	-0.83323	4.22536
Н	-1.61495	-1.41646	2.29888
Н	-3.45474	-0.04796	5.95513
Н	-1.68134	-1.42567	4,789
Ν	-4.70482	-1.54584	-0.20993
Ν	-3.6257	-0.0197	-2.05394
N	-4.74165	1.30463	0.44752
N	-3 206	-0 10967	2 06926
N	3 35018	-1 14733	-0.35886
N	3 09979	1 73765	-0 10749
C	3 72729	-2 31211	0.09673
C	4 36691	1 49536	0.04593
C C	5 48323	-4 02567	0.43985
C C	6 77592	-4 52817	0.21548
C C	7 67659	-3.85008	-0.60217
C C	7 2655	-2 64684	-1 20802
C C	5 98752	-2 144	-0.99307
C C	5.06645	-2 82024	-0 154
ч	8 67308	-1 23607	-0.77798
Ц	7 95597	-7.23077	-0.77798
н	5 65679	-1 22851	-1.6829
II C	7 807/8	-1.22851	0 13830
C	7.57570	2.770 1 9 A 3600A	-0.00720
C	6 2627	4.50504	-0.00729
C	5 1605	3 0102	-0.13404
C	5 20200	J.7172 2 5220	-0.12408
C	5.57509 6 7200	2.3320	0.01901
с u	0.1370	2.10234	0.13101
п U	0.02304	2.02301	0.01726
п	8.40433	J.U039 1.02795	-0.01/30
п	0.92193	1.03/85	0.26088
U	4.01454	-4./31/	1.26018
Н	5.0/49	-5.53436	1.58537
U	3.90222	4.40104	-0.246/6
H	4.0051/	5.435/6	-0.33396
Н	4./44/3	0.48481	0.2028/

Ru	-3.26169	-0.0759	-0.01181
Н	3.08858	-2.93105	0.72808
Н	6.96093	-5.44873	0.72856
Н	5.96086	5.83155	-0.24707

Fig. S3 CVs of Ru complex and the Schiff base ligand before and after addition of Co^{2+} in MeCN (90 uM PBI and Ru-PBI with addition of 180 uM Co^{2+} respectively, Ag/AgCl electrode as reference, 0.1M TBAClO₄ as supporting electrolyte) with the scan rate of 200 mV s⁻¹.

Fig. S4 Interference of some amine derivatives (glycine, serine, arginine, proline, alanine, dopamine, lysine, spermine and uric acid with the same concentration of 18 uM and albumin, lysozyme, pepsase, ethanol dehydrogenase with 4 mg L^{-1} and ssDNA, dsDNA with 2 uM) for ECL intensity of Ru-BP, Ru-PBI-M and Ru-PBI-H (Iⁿ is the ECL intensity after the addition of 18 uM amine derivatives and I⁰ is the initial intensity).

Fig. S5 a) Quenching efficiency on ECL intensity of 45 μ M various metal ions adding to 4.5 μ M Ru-PBI-H in 0.2M PBS (pH = 7.2). b) Probable bonding modes of metal ions for Ru-PBI-H.

Fig. S6 UV-Vis spectra of Ru-PBI-M (blank) in ethanol and Ru-PBI-M bonding with Co^{2+} , Fe^{3+} , Ni²⁺, Zn²⁺(2 eq. metal ions involved related to Ru-PBI-M).

Fig. S7 ECL peak intensity with the addition of different Co^{2+} concentration. Inset is the correlation between the Co^{2+} concentration and the ECL quenching efficiency. ECL experiments were conducted in 0.2 M PBS (pH = 7.2) including 4.5 μ M Ru-PBI-M.

Fig. S8 Polarization curves of Ru-PBI-M (a) and Ru-PBI-M-Co (b) at different rotation (rates scan rate is kept at 5 mV s⁻¹).

Fig. S9 Co^{2+} recognition of Ru-PBIH₄-M (a), step potential (b) and corresponding ECL intensity (c) of 4.5 μ M Ru-PBIH₄-M in 0.2 M PBS. Measuring method is in accordance with Fig. S2.

Fig. S10¹H NMR of Ru-PBIH₄-M and Ru-PBI-M.

Fig. S11 MALDI-TOF-MS of Ru-PBI-M-Co, Ru-PBIH₄-M and Ru-PBI-M.