Supporting Information

Synthesis, characterization and insights into stable and well organized hexagonal

mesoporous zinc-doped alumina as promising metathesis catalysts carrier

Abdelnasser Abidli, *a,b* Safia Hamoudi *a,b* and Khaled Belkacemi* *a,b*

^a Department of Soil Sciences and Agri-Food Engineering, Laval, University. G1V 0A6, Quebec City, Quebec, Canada. E-mail: khaled.belkacemi@fsaa.ulaval.ca; Fax: +1-418-656-3723; Tel: +1-418-656-2131 ext: 6511

^b Centre in Green Chemistry and Catalysis (CGCC), H3A 0B8, Montreal, Quebec, Canada

Figure S1. (a) Nitrogen adsorption–desorption isotherms and (b) BJH pore size distributions curves of the prepared OMA samples: (1) Al₂O₃-acetic, (2) Al₂O₃-citric, (3) Al₂O₃-malonic.

Figure S2. (a) Nitrogen adsorption–desorption isotherms and (b) BJH pore size distributions curves of the prepared zinc chloride modified-OMA samples using citric acid with different aluminum precursors: (1) $ZnCl_2-Al_2O_3-Al(OBu^s)_3$, (2) $ZnCl_2-Al_2O_3-Al(OBu^t)_3$, (3) $ZnCl_2-Al_2O_3-Al(OPr^i)_3$ and (4) $ZnCl_2-Al_2O_3-Al(NO_3)_3 \cdot 9H_2O$. All samples were calcined at 400 °C.

Figure S3. TEM microphages of the prepared zinc chloride-modified ordered mesoporous alumina materials with different carboxylic acids; (a) citric, (c) oxalic, (e) tartaric and (f) fumaric viewed along [001] orientation and (b) maleic and (d) malonic viewed along [110] orientation.

Figure S4. TEM microphages of the prepared zinc chloride-modified OMA using tartaric acid with different aluminum precursors; with (a) aluminum isopropoxide, (c) aluminum nitrate nonahydrate and (d) aluminum-tri-*sec*-butoxide viewed along [001] orientation, and (b) aluminum tri-*tert*-butoxide viewed along [110] orientation.

Figure S5. Representative SEM images obtained for OMA microparticles prepared using Al(OBu^s)₃ with different carboxylic acids: (a) fumaric, (b) tartaric (c, d) oxalic and (e) citric. Energy dispersive X-ray (EDX) spectra of OMA samples obtained using (f) oxalic and (g) fumaric acid.

Figure S6. Representative SEM images obtained for zinc chloride-modified OMA microparticles prepared using different carboxylic acids and aluminum precursors: (a) tartaric-Al(OPr^{*i*})₃, (b) tartaric-Al(OBu^{*i*})₃, (c) citric-Al(OBu^{*s*})₃, (d) oxalic-Al(OBu^{*s*})₃ and (e) oxalic-Al(NO₃)₃ · 9H₂O. Energy dispersive X-ray (EDX) spectra of ZnCl₂-OMA samples obtained using Al(OBu^{*s*})₃ with (f) fumaric and (g) citric acid.

Figure S7. XPS survey spectra of (a) the OMA and (b) the ZnCl₂-modified OMA samples.