Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Supporting Information (SI)

† Electronic Supporting Information (ESI) available: 1H-NMR spectra, additional figures, Schemes and Tables

Fig. S1 ¹H NMR Spectra of 1-amino-4-hydroxy-9,10-anthraquinone.

Fig. S2 ¹H NMR Spectra of the copper complex of 1-amino-4-hydroxy-9,10-anthraquinone.

Fig. S3 Mass spectra of the copper complex of 1-amino-4-hydroxy-9,10-anthraquinone.

Fig. S4 The theoretical vibrational spectra of copper complex.

Fig. **S5** The experimental vibrational spectra of copper complex.

Fig. S6 (a) The UV-Vis spectra of 1-amino-4-hydroxy-9,10-anthraquinone (dotted line) and its copper complex (bold line) in 30% ethanol solution. (b) Theoretical UV-Vis spectrum of copper complex.

Fig. S7 Plot of the cathodic peak current (Ip_c) with the square root of the scan rate ($\sqrt{\nu}$) for both the first (o) and second (•) one-electron reductions of the copper complex in anhydrous dimethyl formamide. [CuQ₂] = 10⁻³ M, [TBAB] = 10⁻³ M and temperature = 25^oC.

Fig. S8 Plot of the cathodic peak current (Ip_c) with the square root of the scan rate (\sqrt{v}) for the reduction of the copper complex in 20% dimethyl formamide. [CuQ₂] = 5×10⁻⁵ M, [TBAB] = 10⁻³ M and temperature = 25^oC.

Fig. S9 The plot of the ratio of anodic to cathodic peak current (I_{pa}/I_{pc}) with the logarithm of scan rate (Vs⁻¹) for the reduction of the copper complex in 20% DMF solution.

Scheme-S1 Electrochemical reduction of 1-amino-4-hydroxy-9,10-anthraquinone in anhydrous dimethyl formamide.

 Table-S1: Comparison of theoretical and experimental IR stretching frequency of the copper complex.

v_{cal} (cm ⁻¹)	Uscaled	Intensity	PED (%)	Interpretation	v _{expt} (cm ⁻¹)
	(cm ⁻¹)				
3690	3547	122	S ₁ (82), S ₂ (-18)	$\upsilon_{sym}(N_{46}-H_{47}), \upsilon_{asym}(N_{46}-H_{48})$	3430
			S ₃ (-82) S ₄ (18)	$\upsilon_{asym}(N_{50}\text{-}H_{51})$ $\upsilon_{sym}(N_{50}\text{-}N_{52})$	
3469	3334	151	S ₃ (-16), S ₄ (75)	$\upsilon_{asym}(N_{50}-H_{51}), \upsilon_{sym}(H_{44}C_{36}-C_{37})$	3410
3238	3112	11.2	$S_{14}(92) + S_8(-92)$	$\upsilon_{asym}(C_{31}-H_{43}) + \upsilon_{asym}(C_{18}-H_{23})$	3205
3207	3082	48	$S_{10}(14), S_{12}(79)$	$\upsilon_{asym}(C_{20}-H_{25}), \upsilon_{asym}(C_{27}-H_{41})$	2952
3191	3067	15	$S_{10}(69), S_{12}(-14), S_{1}(15)$	υ_{sym} (C ₂₀ -H ₂₅), υ_{asym} (C ₂₇ -H ₄₁), υ_{asym} (N ₄₆ - H ₄₇)	2919
3177	3054	33	$S_6(89) + S_{15}(89)$	$\upsilon_{sym}(C_{27}-C_{28}), \upsilon_{asym}(N_{46}-H_{48})$	2849
1704	1638	95	$\frac{S_{24}(45) + S_{20}(32)}{S_{118}(21)}$	$\begin{array}{c} \upsilon_{sym}(O_{5}\text{-}C_{10}), \upsilon_{sym}(O_{3}\text{-}C_{32}), \tau(H_{47}\text{-}C_{37}\text{-}\\ C_{38}\text{-}C_{39}) \end{array}$	1618
1676	1611	219	$S_{29}(-44), S_{62}(23)+$ $S_{144}(18)$		1607
1612	1549	2147	$\frac{S_{35}(-11), S_{62}(-27),}{S_{17}(11) + S_{59}(25)}$	υasym (N46-C7), β (H48-N46-H47), υasym (O49-C12)+ C=O → Cu	1581
1560	1499	272	$S_{23}(-47), S_{75}(11) + S_{143}(34)$		1535
1502	1443	93	$S_{21}(14), S_{34}(-18), S_{69}(11)$		1461
1476	1418	172	$\begin{array}{c} S_{65}(-10), S_{35}(-10), \\ S_{62}(16), S_{75}(14), \\ S_{64}(-10) \end{array}$	$ \begin{array}{c} \beta \ (H_{21}\text{-}C_6\text{-}C_{11}), \nu_{asym} (N_{46}\text{-}C_7), \beta \ (H_{48}\text{-}N_{46}\text{-}\\ H_{47}), \beta \ (H_{45}\text{-}N_{38}\text{-}H_{39}), \beta \ (H_{52}\text{-}N_{50}\text{-}H_{51}) \end{array} $	1438

1433	1377	217	S ₄₂ (-44)	$\upsilon_{asym}(C_9-C_{13})$	1412
1409	1354	67	S ₇₅ (23)	β (H ₄₅ -N ₃₈ -H ₃₉)	1366
1349	1296	133	S ₄₀ (21)	$\upsilon_{asym}(C_9-C_{10})$	1299
1298	1247	722	S ₄₇ (-44), S ₄₈ (-47)	$\upsilon_{asym}(C_{12}-C_8), \upsilon_{asym}(C_{33}-C_{34})$	1262
1201	1149	89	$S_{70}(42), S_{70}(13),$ $S_{34}(-12), S_{28}(23)$	$ \begin{array}{c} \beta \ (H_{40}\text{-}C_{26}\text{-}C_{31}), \ \beta \ (H_{40}\text{-}C_{26}\text{-}C_{31}), \ \upsilon_{asym} \\ \\ (C_{26}\text{-}C_{31}), \ \upsilon_{asym} \ (C_{30}\text{-}C_{31}) \end{array} $	1169
1149	1104	34	S ₆₁ (22)	$\beta (H_{48}-N_{46}-H_{47})$	1123
991	952	85	S ₂₆ (-20), S ₄₀ (-14)	$\upsilon_{asym}(C_{20}-C_{19}), \upsilon_{asym}(C_{10}-C_{9})$	1024
922	886	47	S ₅₈ (-12), S ₈₈ (14)	β (C ₃₃ -C ₃₄ -C ₃₉), β (C ₁₉ -C ₁₈ -C ₁₆)	839
860	826	57	S ₁₁₉ (74)	τ (H ₄₅ -C ₃₈ -C ₃₉ -N ₅₀)	814
748	719	75	S ₁₁₅ (-25)	τ (H ₄₁ -C ₂₇ -C ₂₈ -C ₂₉)	794
673	646	22	S ₅₃ (15)+S ₅₆ (20)	$\beta (C_{15}-C_{16}-C_{18}), \beta (C_{34}-C_{39}-C_{38})$	726
604	580	86	$S_{51}(-10), S_{90}(12), S_{52}(-12)$	υ_{asym} (Cu ₁ -O ₄), β (C ₃₁ -C ₂₆ -C ₂₇), υ_{asym} (Cu ₁ -O ₅)	656
595	572	38	$\begin{array}{c} S_{151}(34), S_{152}(49), \\ S_{52}(12) \end{array}$	$ \begin{aligned} \tau(C_{11}\text{-}C_{9}\text{-}O_{5}\text{-}C_{10}), \tau(C_{37}\text{-}C_{35}\text{-}O_{4}\text{-}C_{36}), \upsilon_{sym} \\ (Cu_{1}\text{-}O_{5}) \end{aligned} $	571

[+ sign is used to indicate a combination mode]

Table-S2: Major contributions of Atomic Orbitals to the Molecular Orbitals involved in UV-visible transitions ^a

Molecular orbitals	% Contribution of atomic orbitals ^b		
(HOMO-2) _α	Cu1-d=22 O5-p=15 O4-p=15 O2-p=12 O3-p=12		
(HOMO-1) _α	N46-p=9 N50-p=9		
(HOMO) _a	N46-p=9		
(LUMO) _α	С32-р=7 С36-р=7 С10-р=5 С13-р=5		
(LUMO+1) _a	C13-p=7		
(LUMO+2) _a	C16-p=9		
(HOMO-3) _β	O49-p=32 O53-p=32		
(HOMO-2) _β	O53-p=18 O49-p=18		
(HOMO-1) _β	N50-p=9		
(HOMO) _β	N46-p=8		
(LUMO) _β	С32-р=7 С14-р=7 С15-р=7 С34-р=7 С35-р=7		
(LUMO+1) _β	C13-p=6		

^a Only atomic orbitals having 5% or more contributions are listed; . ^b Atom numbering scheme as in Figure 5.