Supporting Information for

Luminescent lanthanide–MOFs with millisecond order lifetime based on conjugated 1, 1'–ethynebenzene–3, 3', 5, 5'–tetracarboxylate ligand: syntheses, structures and photoluminescent properties

Lu Zhai,^{a,b} Wen–Wei Zhang,*b Xiao–Ming Ren*a and Jin–Ling Zuo^b

^a State Key Laboratory of Materials–Oriented Chemical Engineering and College of Science, Nanjing Tech University, Nanjing 210009, P. R. China. E–mail: <u>xmren@njtech.edu.cn</u>

^b State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 P. R. China. E-mail: <u>wwzhang@nju.edu.cn</u>

Details for the preparation of 2-9

 $[Ce_2(EBTC)_{1.5}(CH_3OH)_4]\cdot 6H_2O$ (2). An identical procedure with 1 was followed to prepare 2 except La(NO₃)₃·6H₂O was replaced by Ce(NO₃)₃·6H₂O. Colorless block-shaped crystals were achieved (yield: 72% based on Ce). Anal. Calcd for C₃₁H₂₉Ce₂O₁₈: C, 38.39; H, 2.99. Found: C, 38.16; H, 2.97. Selected IR data (KBr pellet, cm⁻¹): 3438 (m), 3067 (w), 3004 (w), 2913 (w), 1626 (s), 1550 (s), 1436 (s), 1378 (s), 1018 (s), 786 (m), 717 (m).

 $[Pr_2(EBTC)(CH_3OH)_4]\cdot 6H_2O$ (3). An identical procedure with 1 was followed to prepare 3 except La(NO₃)₃·6H₂O was replaced by Pr(NO₃)₃·nH₂O. Light-green crystals of 3 were obtained (yield: 68% based on Pr). Anal. Calcd for C₃₁H₂₉Pr₂O₁₈: C, 38.33; H, 3.01. Found: C, 38.23; H, 3.03. Selected IR data (KBr pellet, cm⁻¹): 3369

1

(m), 3072 (w), 3005 (w), 2915 (w), 1628 (s), 1559 (s), 1436 (s), 1375 (s), 1004 (s), 786 (m), 717 (m).

 $[Nd_2(EBTC)(CH_3OH)_4] \cdot 6H_2O$ (4). An identical procedure with 1 was followed to prepare 4 except La(NO₃)₃·6H₂O was replaced by Nd(NO₃)₃·6H₂O. Light-purple crystals of 4 were obtained (yield: 62% based on Nd). Anal. Calcd for C₃₁H₂₉Nd₂O₁₈: C, 38.07; H, 2.99. Found: C, 38.13; H, 2.94. Selected IR data (KBr pellet, cm⁻¹): 3394 (m), 3073 (w), 3001 (w), 2918 (w), 1628 (s), 1559 (s), 1436 (s), 1375 (s), 1011 (s), 786 (m), 717 (m).

 $[Sm_2(EBTC)_{1.5}(CH_3OH)_4] \cdot 6H_2O$ (5). An identical procedure with 1 was followed to prepare 5 except La(NO₃)₃·6H₂O was replaced by Sm(NO₃)₃·nH₂O. Light-yellow crystals of 5 were obtained (yield: 60% based on Sm). Anal. Calcd for C₃₁H₂₉Sm₂O₁₈: C, 37.60; H, 2.95. Found: C, 37.34; H, 2.84. Selected IR data (KBr pellet, cm⁻¹): 3438 (m), 3067 (w), 3004 (w), 2914 (w), 1626 (s), 1550 (s), 1436 (s), 1378 (s), 1018 (s), 786 (m), 717 (m).

 $[Eu_2(EBTC)(CH_3OH)_4]\cdot 6H_2O$ (6). An identical procedure with 1 was followed to prepare 6 except La(NO₃)₃·6H₂O was replaced by Eu(NO₃)₃·nH₂O. Light-yellow crystals of 6 were obtained (yield: 65% based on Eu). Anal. Calcd for C₃₁H₂₉Eu₂O₁₈: C, 37.48; H, 2.92. Found: C, 37.18; H, 2.90. Selected IR data (KBr pellet, cm⁻¹): 3470 (m), 3067 (w), 3003 (w), 2915 (w), 1626 (s), 1550 (s), 1436 (s), 1378 (s), 1018 (s), 786 (m), 717 (m).

 $[Gd_2(EBTC)(CH_3OH)_4] \cdot 6H_2O$ (7). An identical procedure with 1 was followed to prepare 7 except La(NO₃)₃·6H₂O was replaced by Gd(NO₃)₃·nH₂O. Colorless crystals of 7 were obtained (yield: 60% based on Gd). Anal. Calcd for C₃₁H₂₉Gd₂O₁₈: C, 37.08; H, 2.89. Found: C, 36.75; H, 2.86. Selected IR data (KBr pellet, cm⁻¹): 3421 (m), 3069 (w), 3004 (w), 2915 (w), 1626 (s), 1550 (s), 1440 (s), 1380 (s), 1014 (s), 786 (m), 717 (m).

 $[Tb_2(EBTC)(CH_3OH)_4]\cdot 6H_2O$ (8). An identical procedure with 1 was followed to prepare 8 except La(NO₃)₃·6H₂O was replaced by Tb(NO₃)₃·nH₂O. Light-yellow crystals of 8 were obtained (yield: 66% based on Tb). Anal. Calcd for C₃₁H₂₉Tb₂O₁₈: C, 36.96; H, 2.88. Found: C, 36.63; H, 2.85. Selected IR data (KBr pellet, cm⁻¹): 3457

2

(m), 3070 (w), 3004 (w), 2912 (w), 1628 (s), 1558 (s), 1436 (s), 1378 (s), 1018 (s), 786 (m), 717 (m).

 $[Dy_2(EBTC)(CH_3OH)_4] \cdot 6H_2O$ (9). An identical procedure with 1 was followed to prepare 9 except La(NO₃)₃·6H₂O was replaced by Dy(NO₃)₃·nH₂O. Colorless crystals of 9 were obtained (yield: 61% based on Dy). Anal. Calcd for C₃₁H₂₉Dy₂O₁₈: C, 36.70; H, 2.88. Found: C, 36.87; H, 2.81. Selected IR data (KBr pellet, cm⁻¹): 3438 (m), 3067 (w), 3003 (w), 2915 (w), 1628 (s), 1560 (s), 1448 (s), 1378 (s), 1016 (s), 786 (m), 718 (m).

Table S1 Cell Parameters of Compounds

```
C_{31}H_{29}Ln_2O_{18} (Ln = La (1), Ce (2), Pr (3), Nd (4), Sm (5), Gd (7), Dy (9)
```

Compound	Ln	a (Å)	b(Å)	c(Å)	β / Å	V(Å ³)
1	La	14.674(4)	16.331(4)	21.113(5)	105.917(4)	4866(2)
2	Ce	14.651(4)	16.444(5)	20.994(6)	106.051(4)	4861(2)
3	Pr	14.578(3)	16.669(4)	19.790(4)	107.057(3)	4597.2(18)
4	Nd	14.5952(12)	16.7329(11)	19.5713(14)	107.344(3)	4562.4(6)
5	Sm	14.4388(18)	16.4128(19)	19.3310(12)	107.606(3)	4366.5(8)
7	Gd	14.41(4)	17.08(4)	19.55(5)	107.72(4)	4579(20)
9	Dy	14.4821(18)	16.7137(19)	19.2130(12)	108.039(3)	4421.9(8)

Space group: P2(1)/n

Table S2 Selected bond angles (°) in 4, 5 and 9

4					
O6-Nd1-O14	82.82(15)	O6-Nd1-O10	139.68(15)		
O14-Nd1-O10	129.59(15)	O6-Nd1-O13	78.62(17)		
O14-Nd1-O13	153.69(16)	O10-Nd1-O13	75.68(16)		
O6-Nd1-O1	80.90(15)	O14-Nd1-O1	87.32(16)		
O10-Nd1-O1	78.06(15)	O13-Nd1-O1	107.75(16)		
O6-Nd1-O4	127.69(16)	O14-Nd1-O4	88.42(15)		
O10-Nd1-O4	82.13(15)	O13-Nd1-O4	88.33(16)		
O1-Nd1-O4	150.23(13)	O6-Nd1-O3	75.90(16)		
O14-Nd1-O3	79.63(16)	O10-Nd1-O3	126.89(16)		
O13-Nd1-O3	77.88(16)	O1-Nd1-O3	154.56(14)		
O4-Nd1-O3	51.80(14)	O6-Nd1-O9	148.73(16)		
O14-Nd1-O9	75.81(15)	O10-Nd1-O9	53.89(14)		
O13-Nd1-O9	128.12(16)	O1-Nd1-O9	75.61(13)		
O4-Nd1-O9	74.78(14)	O3-Nd1-O9	121.19(14)		
O2-Nd2-O15	78.03(15)	O2-Nd2-O5	83.68(17)		
O15-Nd2-O5	115.05(15)	O2-Nd2-O8	129.29(16)		
O15-Nd2-O8	79.44(16)	O5-Nd2-O8	146.93(17)		
O2-Nd2-O16	136.18(16)	O15-Nd2-O16	75.88(16)		
O5-Nd2-O16	76.43(18)	O8-Nd2-O16	79.06(18)		
O2-Nd2-O11	79.91(16)	O15-Nd2-O11	150.43(16)		
O5-Nd2-O11	81.54(16)	O8-Nd2-O11	100.03(17)		
O16-Nd2-O11	133.40(17)	O2-Nd2-O12	131.26(16)		
O15-Nd2-O12	150.50(16)	O5-Nd2-O12	77.16(16)		

O8-Nd2-O12	77.64(16)	O16-Nd2-O12	81.72(16)
O11-Nd2-O12	53.36(16)	O2-Nd2-O7	81.72(15)
O15-Nd2-O7	80.56(15)	O5-Nd2-O7	155.81(15)
O8-Nd2-O7	50.01(15)	O16-Nd2-O7	126.93(17)
O11-Nd2-O7	76.99(15)	O12-Nd2-O7	98.37(16)
	5	i	
O6-Sm1-O10	140.0(2)	O6-Sm1-O14	82.9(2)
O10-Sm1-O14	129.1(2)	O6-Sm1-O13	78.9(2)
O10-Sm1-O13	75.8(2)	O14-Sm1-O13	154.0(2)
O6-Sm1-O1	80.9(2)	O10-Sm1-O1	78.0(2)
O14-Sm1-O1	87.6(2)	O13-Sm1-O1	107.6(2)
O6-Sm1-O4	128.0(2)	O10-Sm1-O4	81.7(2)
O14-Sm1-O4	88.4(2)	O14-Sm1-O4	88.2(2)
O1-Sm1-O4	150.00(18)	O6-Sm1-O3	75.8(2)
O10-Sm1-O3	126.8(2)	O14-Sm1-O3	79.9(2)
O13-Sm1-O3	77.7(2)	O1–Sm1–O3	154.7(2)
O4-Sm1-O3	52.17(19)	O6-Sm1-O9	148.3(2)
O10-Sm1-O9	54.0(2)	O14-Sm1-O9	75.3(2)
O13-Sm1-O9	128.4(2)	O1-Sm1-O9	75.52(18)
O4-Sm1-O9	74.71(19)	O3-Sm1-O9	121.36(19)
O2-Sm2-O15	78.4(2)	O2-Sm2-O8	129.9(2)
O15- Sm2-O8	79.7(2)	O2- Sm2-O5	83.2(2)
O15- Sm2-O5	114.5(2)	O8- Sm2-O5	146.8(2)
O2- Sm2-O11	79.4(2)	O15-Sm2-O11	150.5(2)
O8– Sm2–O11	100.4(2)	O5- Sm2-O11	81.7(2)
O2- Sm2-O16	136.5(2)	O15-Sm2-O16	75.7(2)
O8- Sm2-O16	78.5(2)	O5- Sm2-O16	76.6(2)
O11-Sm2-O15	133.6(2)	O2- Sm2-O12	131.3(2)
O15- Sm2-O12	150.2(2)	O8- Sm2-O12	77.4(2)
O5- Sm2-O12	77.3(2)	O11-Sm2-O12	54.1(2)
O16- Sm2-O12	81.1(2)	O2- Sm2-O7	81.5(2)
O15- Sm2-O7	81.0(2)	O8- Sm2-O7	50.8(2)
O5- Sm2-O7	155.5(2)	O11-Sm2-O7	76.8(2)
O16- Sm2-O7	127.2(2)	O12- Sm2-O7	98.8(2)
	9)	
O6-Dy1-O1	80.86(12)	O6-Dy1-O13	78.80(14)
O1-Dy1-O13	106.76(12)	O6-Dy1-O14	82.39(13)
O1-Dy1-O14	88.33(13)	O13-Dy1-O14	153.49(14)
O6-Dy1-O10	139.68(13)	O1-Dy1-O10	77.82(12)
O13-Dy1-O10	75.23(14)	O14-Dy1-O10	130.24(13)
O6-Dy1-O14	127.91(13)	O1-Dy1-O4	150.00(11)
O13-Dy1-O4	89.28(12)	O14-Dy1-O4	87.69(12)
O10-Dy1-O4	82.22(13)	O6-Dy1-O3	75.49(13)
O1-Dy1-O3	154.21(12)	O13-Dy1-O3	78.75(13)

O14-Dy1-O3	78.58(13)	O10-Dy1-O3	127.42(13)
O4–Dy1–O3	52.43(12)	O6-Dy1-O9	148.62(13)
O1-Dy1-O9	76.02(11)	O13-Dy1-O9	128.09(14)
O14-Dy1-O9	76.08(13)	O10-Dy1-O9	54.26(13)
O4-Dy1-O9	74.17(12)	O3-Dy1-O9	121.08(11)
O2–Dy2–O5	82.95(14)	O2–Dy2–O8	130.47(13)
O5–Dy2–O8	146.54(14)	O2-Dy2-O15	78.05(13)
O5-Dy2-O15	114.22(13)	O8-Dy2-O15	79.76(13)
O2-Dy2-O16	135.30(13)	O5-Dy2-O16	76.92(14)
O8-Dy2-O16	78.13(14)	O15-Dy2-O16	74.72(13)
O2-Dy2-O11	80.48(14)	O5-Dy2-O11	81.64(13)
O8-Dy2-O11	100.32(13)	O15-Dy2-O11	151.20(13)
O16-Dy2-O11	133.82(14)	O2-Dy2-O12	131.64(14)
O5-Dy2-O12	77.84(14)	O8-Dy2-O12	77.04(13)
O15-Dy2-O12	150.16(13)	O16-Dy2-O12	82.32(14)
O11-Dy2-O12	53.19(13)	O2–Dy2–O7	82.59(12)
O5–Dy2–O7	155.87(13)	O8–Dy2–O7	50.53(13)
O15-Dy2-O7	81.38(13)	O16-Dy2-O7	126.43(13)
O11-Dy2-O7	77.00(13)	O12-Dy2-O7	97.78(13)

 Table S3 Crystallographic data and structural refinements for 1 and 3

Compound	1	3		
Formula	$C_{31}H_{29}La_2O_{18}$	$C_{31}H_{29}Pr_2O_{18}$		
Formula weight	966.35	971.33		
Temperature (K)	296(2)	296(2)		
Wavelength (Å)	0.71073	0.71073		
Crystal size /mm	0.20×0.20×0.15	0.19×0.17×0.14		
Crystal system	Monoclinic	Monoclinic		
Space group	P2(1)/n	P2(1)/n		
a / Å	14.674(4)	14.578(3)		
b / \mathring{A}	16.331(4)	16.669(4)		
c / Å	21.113(5)	19.790(4)		
eta/\AA	105.917(4)	107.057(3)		
V/\AA^3	4866(2)	4597.2(18)		
Ζ	4	4		
<i>F(000)</i>	1892	1892		
$ heta_{ m min,max}/\circ$	1.51-25.00	1.90-26.00		
GOF	1.166	1.042		
$R_1, WR_2 [I > 2\sigma(I)]^a$	0.2050, 0.4868	0.1287, 0.3054		
${}^{a}R = \Sigma F_{o} - F_{c} / \Sigma F_{o} ; wR_{2} = \{ \Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma (w(F_{o}^{2})^{2}] \}^{1/2}$				

1							
bond lengths							
La1-O10	2.62(3)	La1–O5	2.56(3)	La1–O1	2.58(3)		
La1–O6	2.69(3)	La1–O8	2.63(2)	La1–O13	2.58(4)		
La1–O4	2.43(2)	La1–O14	2.51(3)	La2–O7	2.43(2)		
La2–O3	2.47(3)	La2-O12	2.50(4)	La2-O11	2.48(3)		
La2–O16	2.69(2)	La2-O15	2.59(3)	La2–O2	2.62(2)		
La2–O9	2.60(3)						
		bond a	ingles				
O4-La1-O14	84.5(9)	O4-La1-O5	123.5(8)	O14-La1-O5	146.4(9)		
O4-La1-O1	82.4(10)	O14-La1-O1	137.8(10)	O5-La1-O1	70.3(10)		
O4-La1-O13	153.6(8)	O14-La1-O13	77.6(9)	O5-La1-O13	69.4(9)		
O1-La1-O13	123.7(10)	O4-La1-O10	74.2(8)	O14-La1-O10	142.9(9)		
O5-La1-O10	50.3(8)	O1-La1-O10	69.5(10)	O13-La1-O10	109.5(8)		
O4-La1-O8	77.9(8)	O14-La1-O8	73.1(8)	O5-La1-O8	126.7(8)		
O1–La1–O8	65.0(10)	O13-La1-O8	114.4(8)	O10-La1-O8	128.9(8)		
O6-La1-O4	127.0(8)	O14-La1-O6	80.0(8)	O5-La1-O6	94.0(8)		
O1-La1-O6	76.5(10)	O13-La1-O6	69.0(8)	O10-La1-O6	137.0(8)		
O8-La1-O6	49.0(8)	O7–La2–O3	80.1(9)	O7-La2-O11	152.6(9)		
O3-La2-O11	90.8(9)	O7-La2-O12	94.4(10)	O3-La2-O12	144.2(11)		
O11-La2-O1	78.1(10)	O7-La2-O15	85.4(8)	O3-La2-O15	77.8(9)		
2							
O11-La2-O1	118.0(9)	O12-La2-O15	137.4(10)	O7–La2–O9	70.8(8)		
5							
O3–La2–O9	138.6(9)	O11-La2-O9	127.8(9)	O12-La2-O9	68.6(10)		
O15-La2-O9	71.3(8)	O7–La2–O2	120.2(8)	O3–La2–O2	141.5(8)		
O11-La2-O2	82.6(8)	O12–La2–O2	71.2(10)	O15-La2-O2	72.4(8)		
O9–La2–O2	49.6(7)	O7–La2–O16	128.3(7)	O3-La2-O16	70.7(8)		
O11-La2-O1	70.7(8)	O12-La2-O16	133.5(9)	O15-La2-O16	47.9(8)		
6							
O9-La2-O16	105.3(7)	O2-La2-O16	71.4(7)				
		3	5				
bond lengths							
Pr1–O1	2.390(11)	Pr1–O3	2.581(13)	Pr1-O4	2.481(14)		
Pr1-O6	2.489(17)	Pr209	2.465(14)	Pr2-O10	2.592(11)		
Pr2-O13	2.343(13)	Pr2014	2.550(14)	Pr1-O2	2.47(3)		
Pr1–O7	2.575(15)	Pr1–O8	2.432(13)	Pr2-O16	2.39(2)		
Pr1–O5	2.483(18)	Pr2-O11	2.397(12)	Pr2-O15	2.499(13)		
Pr2012	2.35(2)						
		bond a	angles				
O1-Pr1-O8	84.1(4)	O1-Pr1-O2	81.4(8)	O8-Pr1-O2	131.8(12)		
O1-Pr1-O4	128.8(4)	O8-Pr1-O4	143.6(5)	O2-Pr1-O4	75.3(11)		
O1-Pr1-O5	151.2(6)	O8-Pr1-O5	83.5(7)	O2-Pr1-O5	87.7(9)		

Table S4 Selected bond lengths	$(Å)$ and angles (\circ) in 1 and 3

O4-Pr1-O5	72.7(6)	O1-Pr1-O6	79.3(6)	O8-Pr1-O6	79.5(7)
O2-Pr1-O6	140.8(10)	O4-Pr1-O6	90.9(7)	O5-Pr1-O6	123.5(7)
O1–Pr1–O7	127.5(4)	O8-Pr1-O7	72.8(5)	O2-Pr1-O7	147.3(9)
O4-Pr1-O7	74.0(6)	O5-Pr1-O7	72.6(6)	O6-Pr1-O7	50.9(5)
O1-Pr1-O3	77.7(4)	O8-Pr1-O3	148.2(6)	O2-Pr1-O3	71.0(11)
O4-Pr1-O3	51.8(4)	O5-Pr1-O3	123.7(6)	O6-Pr1-O3	71.7(7)
O7–Pr1–O3	98.1(6)	O13-Pr2-O12	85.1(8)	O13-Pr2-O16	76.9(10)
O12-Pr2-O16	154.5(9)	O13-Pr2-O11	80.0(5)	O12-Pr2-O11	88.0(7)
O16-Pr2-O11	106.2(10)	O13-Pr2-O9	139.1(7)	O12-Pr2-O9	129.8(6)
O16-Pr2-O9	74.3(8)	O11-Pr2-O9	80.8(5)	O13-Pr2-O15	128.9(5)
O12-Pr2-O15	88.6(9)	O16-Pr2-O15	88.8(11)	O11-Pr2-O15	150.4(4)
O9-Pr2-O15	79.0(6)	O13-Pr2-O14	78.0(5)	O12-Pr2-O14	81.5(9)
O16-Pr2-O14	77.3(10)	O11-Pr2-O14	156.3(5)	O 9-Pr2-O14	122.1(6)
O15-Pr2-O14	51.0(4)	O13-Pr2-O10	151.6(5)	O12-Pr2-O10	78.8(6)
O16-Pr2-O10	124.6(8)	O11-Pr2-O10	76.2(4)	O 9-Pr2-O10	51.0(4)
O15-Pr2-O10	74.3(4)	O14-Pr2-O10	121.8(4)		

Fig. S1 PXRD patterns of simulated from the X–ray single–crystal structures and assynthesized samples of **3**, **4**, **5** and **9**.

Fig. S2 The IR spectra of 1–9 recorded from a KBr pellet.

Fig. S3 (a) Coordination environments of Nd³⁺ ions with the H atoms omitted for clarity; symmetry codes: a = -1+x, y, z; b = 1.5-x, 0.5+y, 0.5-z; c = 0.5+x, 0.5-y, -0.5+z; (b) coordination polyhedron of Nd³⁺ ions; (c) coordination environments of Dy³⁺ ions with the H atoms omitted for clarity; symmetry codes: a = 0.5+x, 0.5-y, -0.5+z; b = -0.5+x, 0.5-y, -0.5+z; c = -1+x, y, z; (d) coordination polyhedron of Dy³⁺ ions.

Fig. S4 The TG curves of **1–9**.

Fig. S5 (a) UV-vis absorption and (b) emission spectra of H_4EBTC in solid state at room temperature.

Fig. S6 The excitation spectra of 1 (a), 6 (b), 7 (c), 8 (d), 9 (e) in solid state at room temperature, monitored at 556 nm, 618 nm, 556 nm, 546 nm and 575 nm respectively.