Supporting Information

Synthesis of cyclometalated 1,3,5-triphenylpyrazole palladium dimer and its activity towards cross coupling reactions

Ramesh Mamidala^[a], Vanga Mukundam^[a], Kunchala Dhanunjayarao^[a], and Krishnan Venkatasubbaiah*^[a]

School of Chemical Sciences, National Institute of Science Education and Research (NISER), Institute of Physics Campus, Bhubaneswar-751005, Orissa (India). Fax: 091-674-2302436; Tel: 091-6742304021; E-mail: krishv@niser.ac.in

Reagents and solvents were purified according to standard procedures. Palladium acetate, 1,3-diphenyl-1,3-propanedione and phenylhydrazine were purchased from Sigma-Aldrich. Glacial acetic acid was obtained from Spectrochem. All glassware including Schlenk tubes were cleaned using base bath (potassium hydroxide in isopropanol solution), and acid bath (hydrochloric acid in distilled water). In some instance we used hydrofluoric acid to clean the Schlenk tubes. The stir-bars were cleaned using aqua regia solution. All 400 MHz ¹H, 100 MHz ¹³C spectra were recorded on a Bruker ARX 400 spectrometer operating at 400 MHz. All ¹H and ¹³C NMR spectra were referenced internally to solvent signals. ESI mass spectra were recorded on Bruker, microTOF-QII mass spectrometer. Elemental analyses were carried out by using a Thermo quest CE instrument model EA/110 CHNS-O elemental analyzer. Single-crystal X-ray diffraction data were collected on a Bruker APEX-II diffractometer equipped with an Oxford Instruments low-temperature attachment. The data were collected at 296 K using, Mo-Kα radiation (0.71073 Å). Crystallographic data for **1** and details of X-ray diffraction experiments and crystal structure refinements are given in Table 1. SADABS¹ absorption corrections were applied in both cases.¹ The structures were solved and refined with SHELX suite of programs.²All non-hydrogen atoms were refined with anisotropic displacement coefficients. The H atoms were placed at calculated positions and were refined as riding atoms. Crystallographic data for the structure of 1 have been deposited with the Cambridge Crystallographic Data Center as supplementary publication no. CCDC-1040304. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44) 1223-336-033; email: deposit@ccdc.cam.ac.uk).

Table S1: Optimization of Heck cross coupling reaction of Bromobenzene and Methyl acrylate using palladacycle^a

Entry	Cat. (mol%)	Base	Solvent	TBAB (mol%)	Temp. (⁰ C)	Time (h)	Yield ^b (%)	TON ^d
1	0.1	K ₂ CO ₃	DMF	-	110	12	Trace	-
2	0.1	K_2CO_3	DMF	-	130	12	12	124
3	0.1	K ₂ CO ₃	DMF	-	130	30	21	210
4	0.1	K ₂ CO ₃	DMF	-	140	30	22	221
5	0.1	K ₂ CO ₃	DMF	10	140	30	32	321
6	0.1	K ₃ PO ₄	DMF	10	140	30	54	541
7	0.1	K ₃ PO ₄	DMF	10	160	30	57	570
8	0.2	K ₃ PO ₄	DMF	10	160	30	62	310
9	0.2	K ₃ PO ₄	DMAc	10	160	30	45	226
10	0.2	K ₃ PO ₄ .H ₂ O	DMF	10	160	30	15	77
11	0.4	K ₃ PO ₄	DMF	10	160	30	49 ^c	123
12	0.4	K ₃ PO ₄	DMAc	10	160	30	65	162
13	0.2	K ₃ PO ₄	DMF	20	160	30	61	311
14	0.2	K ₃ PO ₄	DMF	20	160	48	63	313
15	0.2	K ₃ PO ₄	NMP	10	160	30	81	404

^aReaction conditions: 1 equiv of bromobenzene, 2 equiv of Methyl acrylate, 2 equiv of base. TBAB : Tetrabutylammoniumbromide, DMAc : Dimethylacetamide, NMP : N-methyl-2pyrrolidone; ^bIsolated yield after chromatography; ^cBiphenyl product was also observed. ^dTurn over number, based on number of moles of the isolated product;.

Table S2 : Heck cross coupling reaction of Bromobenzene and Styrene using palladacycle^a

 \wedge

	Br	+						
Entry	Cat. (mol%)	Base	Solvent	TBAB (mol%)	Temp. (⁰ C)	Time (h)	Yield ^b (%)	TON ^c
1	0.1	K ₂ CO ₃	DMF	10	110	30	51	511
2	0.2	K ₃ PO ₄	DMF	10	160	30	96	475
3	0.2	K ₃ PO ₄	NMP	10	160	30	99	498

^aReaction conditions: 1 equiv of Bromobenzene, 2 equiv of Styrene, 2 equiv of base; ^bIsolated yield after chromatography. ^cTurn over number, based on number of moles of the isolated product

Table S3 : Heck cross coupling reaction of iodobenzene and methyl acrylate using palladacycle (1)

Entry	Base	Solvent	Temp. (⁰ C)	Time (h)	Yield ^c (%)	TON ^d
1^a	K ₂ CO ₃	DMF	110	48	86	$1.88 \ge 10^{6}$
2^{a}	K ₃ PO ₄	NMP	160	30	96	1.92 X 10 ⁶
3 ^b	K ₂ CO ₃	DMF	90	48	91	9 X 10 ⁵
$4^{\rm e}$	K ₂ CO ₃	NMP	140	10	-	-

^aReaction conditions: 2.45 mmol of iodobenzene, 4.90 mmol of methylacrylate, 4.90 mmol of base and 1.2×10^{-6} mmol of precatalyst 1 in 4 ml solvent

^b Reaction conditions: 2.45 mmol of iodobenzene, 4.90 mmol of methylacrylate, 4.90 mmol of base 2.5 X 10⁻⁶ mmol of precatalyst in 4 ml solvent

^cIsolated yield after chromatography

^dTurn over number (TON), based on number of moles of the isolated product

^eReaction conditions: 2.45 mmol of iodobenzene, 4.90 mmol of methylacrylate, and 4.90 mmol of base

Characterization data of the products in Table 2 and Table 3:

White solid (m.p.37 0 C), HR-MS (ESI): calcd. for C₁₀H₁₀O₂ ([M + H]⁺) : 163.0754 , found : 163.0762 1 H NMR (400 MHz, CDCl₃) δ = 7.70 (d, J = 16 Hz, 1H, CH=CH), 7.54-7.51 (m, 2H, ArH), 7.39 (t, J = 4 Hz, 3H, ArH), 6.45 (d, J = 16 Hz, 1H, CH=CH), 3.81 (s, 3H, OMe). 13 C NMR (100 MHz, CDCl₃) δ = 167.45, 144.89, 134.40, 130.30, 128.90, 128.08, 117.82, 51.71.

White solid (m.p. 92 ⁰C), HR-MS (ESI): calcd. for $C_{11}H_{12}O_3$ ([M + Na]⁺) : 215.0679, found : 215.0689. ¹H NMR (400 MHz, CDCl₃) δ = 7.66 (d, J = 16 Hz, 1H, CH=CH), 7.48 (d, J = 8 Hz, 2H, ArH), 6.91 (d, J = 8 Hz, 2H, ArH), 6.32 (d, J = 16 Hz, 1H, CH=CH), 3.83 (s, 3H, OMe), 3.77 (s, 3H, OMe). ¹³C NMR (100 MHz, CDCl₃) δ = 167.75, 161.40, 144.52, 129.72, 127.10, 115.25, 114.32, 55.34, 51.55.

White solid (m.p. 148 ⁰C), HR-MS (ESI): calcd. for $C_{16}H_{14}O_2([M + H]^+)$: 239.1067, found : 239.1064. ¹H NMR (400 MHz, CDCl₃) δ = 7.75 (d, J = 16 Hz, 1H, CH=CH), 7.58-7.64 (m, 6H, ArH), 7.48-7.44 (t, J = 8 Hz, 2H, ArH), 7.36-7.40 (t, J = 8 Hz, 2H, ArH), 6.49 (d, J = 16 Hz, 1H, CH=CH), 3.83 (s, 3H, OMe). ¹³C NMR (100 MHz, CDCl₃) δ = 167.50, 144.43, 143.09, 140.15, 133.35, 128.93, 128.60, 127.88, 127.56, 127.06, 117.66, 51.75.

¹H NMR (400 MHz, CDCl₃) δ = 8.00 (d, J = 16 Hz, 1H, CH=CH), 7.50 (d, J = 8 Hz, 1H, ArH), 7.35 (t, J = 8 Hz, 1H, ArH), 6.90-6.98 (m, 2H, ArH), 6.53 (d, J = 16 Hz, 1H, CH=CH), 3.88 (s, 3H, OMe), 3.80 (s, 3H, OMe). ¹³C NMR (100 MHz, CDCl₃) δ = 167.96, 158.36, 140.30, 131.50, 128.92, 123.37, 120.70, 118.32, 111.15, 55.47, 51.60.

White solid (m.p.49 ⁰C), HR-MS (ESI): calcd. for $C_{12}H_{14}O_2$ ([M + H]⁺) : 191.1067, found : 191.1067. ¹H NMR (400 MHz, CDCl₃) δ = 7.64 (d, J = 16 Hz, 1H, CH=CH), 7.13 (s, 2H, ArH), 7.01 (s, 1H, ArH), 6.36 (d, J = 16 Hz, 1H, CH=CH), 3.80 (s, 3H, OMe), 2.32 (s, 6H, Me). ¹³C NMR (100 MHz, CDCl₃) δ = 167.54, 145.22, 138.38, 134.32, 132.10, 125.98, 117.32, 51.58, 21.16.

Light yellow solid (m.p.76 0 C), HR-MS (ESI): calcd. for C₁₁H₉O₂F₃ ([M + H]⁺) : 231.0627, found : 231.0649. ¹H NMR (400 MHz, CDCl₃) δ = 7.69 (d, J = 16 Hz, 1H, CH=CH),7.64-7.61 (m, 4H, ArH), 6.50 (d, J = 16 Hz, 1H, CH=CH), 3.81 (s, 3H, OMe). ¹³C NMR (100 MHz, CDCl₃) δ = 166.83, 142.96, 137.75, 128.17, 125.86, 125.17, 122.46, 120.36, 51.88.

White solid (m.p.59 ⁰C), HR-MS (ESI): calcd. for $C_{11}H_{12}O_2([M + H]^+)$: 177.0910, found : 177.0924. ¹H NMR (400 MHz, CDCl₃) δ = 7.70 (d, J = 16 Hz, 1H, CH=CH), 7.44 (d, J = 8 Hz, 2H, ArH), 7.21 (d, J = 8 Hz, 2H, ArH), 6.42 (d, J = 16 Hz, 1H, CH=CH), 3.82 (s, 3H, OMe), 2.39 (s, 3H, Me). ¹³C NMR (100 MHz, CDCl₃) δ = 167.62, 144.88, 140.72, 131.67, 129.63, 128.08, 116.70, 51.62, 21.46.

White solid (m.p.106 0 C), HR-MS (ESI): calcd. for C₁₁H₉O₂N ([M + H]⁺) : 188.0706 , found : 188.0703. ¹H NMR (400 MHz, CDCl₃) δ = 7.58-7.67 (m, 5H), 6.50 (d, J = 16 Hz), 3.81 (s, 3H, OMe). ¹³C NMR (100 MHz, CDCl₃) δ = 166.57, 142.41, 138.65, 132.66, 128.41, 121.38, 118.34, 113.42, 52.02.

White solid (m.p.124 0 C). ¹H NMR (400 MHz, CDCl₃) δ = 7.66-7.64 (m, 4H, ArH), 7.51-7.35 (m, 6H, ArH), 7.26-7.18 (.m, 2H, CH=CH). ¹³C NMR (100 MHz, CDCl₃) δ = 137.47, 128.84, 127.76, 126.68.

White solid (m.p.134 0 C), HR-MS (ESI): calcd. for C₁₅H₁₄O ([M + H]⁺) : 212.1151 , found : 212.1127. ¹H NMR (400 MHz, CDCl₃) δ = 7.53-7.47 (m, 4H, ArH), 7.37 (t, J = 8 Hz, 2H, ArH), 7.26 (t, J = 8 Hz, 1H, ArH), 7.12 (d, J = 16 Hz, 1H,CH=CH), 6.98 (d, J = 16 Hz, 1H,CH=CH), 6.93 (d, J = 8 Hz, 2H, ArH), 3.85 (s, 3H, OMe). ¹³C NMR (100 MHz, CDCl₃) δ = 159.34, 137.69, 130.18, 128.68, 128.25, 127.76, 127.25, 126.65, 126.30, 114.18, 55.35.

White solid (m.p.219 0 C). ¹H NMR (400 MHz, CDCl₃) δ = 7.65-7.59 (m, 6H, ArH), 7.55 (d, J = 8 Hz, 2H, ArH), 7.46 (t, J = 8 Hz, 2H, ArH), 7.41- 7.35 (m, 3H, ArH), 7.30-7.25 (m, 1H, ArH), 7.17 (s, 2H, CH=CH). ¹³C NMR (100 MHz, CDCl₃) δ = 139.99, 139.66, 136.65, 135.71, 128.13, 128.07, 128.03, 127.52, 126.98, 126.68, 126.66, 126.27, 126.25, 125.86.

White solid (m.p.119 ⁰C), HR-MS (ESI): calcd. for $C_{15}H_{11}N([M + H]^+)$: 206.0964, found : 206.0963. ¹H NMR (400 MHz, CDCl₃) δ = 7.65-7.53 (m, 6H, ArH), 7.40 (t, J = 8 Hz, 2H, ArH), 7.32 (t, J = 8 Hz, 1H, ArH), 7.20 (d, J = 16 Hz, 1H, CH=CH), 7.07 (d, J = 16 Hz, 1H, CH=CH). ¹³C NMR (100 MHz, CDCl₃) δ = 141.86, 136.30, 132.51, 132.43, 128.88, 128.67, 126.93, 126.88, 126.74, 119.05, 110.59.

¹H NMR (400 MHz, CDCl₃) δ = 7.63-7.48 (m, 4H, ArH), 7.36 (t, J = 8 Hz, 2H, ArH), 7.28-7.24 (m, 2H, ArH), 7.13 (d, J = 16 Hz, 1H, CH=CH), 6.99 (t, J = 8 Hz, 1H, ArH), 6.92 (d, J = 16 Hz, 1H, CH=CH), 3.90 (s, 3H, OMe). ¹³C NMR (100 MHz, CDCl₃) δ = 156.94, 137.99, 129.13, 128.68, 128.60, 127.37, 126.58, 126.47, 126.43, 123.52, 120.77, 110.97, 55.55.

¹H NMR (400 MHz, CDCl₃) δ = 7.52 (d, J = 8 Hz, 2H, ArH), 7.37 (t, J = 8 Hz, 2H, ArH), 7.26 (t, J = 8 Hz, 1H, ArH), 7.16 (s, 2H, ArH), 7.14-7.04 (m, 2H, CH=CH), 6.93 (s, 1H, ArH), 2.36 (s, 6H, Me). ¹³C NMR (100 MHz, CDCl₃) δ = 137.44, 136.84, 136.55, 128.75, 128.20, 127.98, 127.61, 126.78, 125.77, 123.75, 20.63.

Light yellow solid (m.p.144 0 C). ¹H NMR (400 MHz, CDCl₃) δ = 7.96 (d, J = 8 Hz, 2H, ArH), 7.60-7.54 (m, 4H, ArH), 7.39 (t, J = 8 Hz, 2H, ArH), 7.31 (t, J = 8 Hz, 1H, ArH), 7.23 (d, J = 16 Hz, 1H, CH=CH), 7.13 (d, J = 16 Hz, 1H, CH=CH), 2.61 (s, 3H, Me). ¹³C NMR (100 MHz, CDCl₃) δ = 197.53, 142.03, 136.71, 135.96, 131.48, 128.90, 128.82, 128.34, 127.46, 126.84, 126.52, 26.61.

White solid (m.p.136 ⁰C). ¹H NMR (400 MHz, CDCl₃) δ = 7.59 (s, 4H, ArH), 7.52 (d, J = 8 Hz, 2H, ArH), 7.37 (t, J = 8 Hz, 2H, ArH), 7.29(t, J = 8 Hz, 1H, ArH), 7.18 (d, J = 16 Hz, 1H, CH=CH), 7.12(d, J = 16 Hz, 1H, CH=CH). ¹³C NMR (100 MHz, CDCl₃) δ = 140.82, 136.65, 131.22, 128.82, 128.31, 127.14, 126.80, 126.59, 125.70, 125.66, 125.63, 125.59.

White solid (m.p.122 0 C). ¹H NMR (400 MHz, CDCl₃) δ = 7.55 (d, J = 8 Hz, 2H, ArH), 7.46 (d, J = 8 Hz, 2H, ArH), 7.40 (t, J = 8 Hz, 2H, ArH), 7.31-7.18 (m, 4H, ArH), 7.17-7.08 (m, 2H, CH=CH), 2.41 (s, 3H, Me). ¹³C NMR (100 MHz, CDCl₃) δ = 137.55, 134.58, 129.43, 128.68, 128.65, 127.73, 127.43, 126.46, 126.43, 21.29.

White solid (m.p.89 ^oC). ¹H NMR (400 MHz, CDCl₃) δ = 7.65-7.55 (m, 4H, ArH), 7.51-7.43 (m, 2H, ArH), 7.40-7.34 (m, 1H, ArH), 7.07-7.00 (m, 2H, ArH), 3.90 (s, 3H, OMe). ¹³C NMR (100 MHz, CDCl₃) δ = 159.26, 140.91, 140.87, 133.84, 133.82, 128.84, 128.24, 126.83, 114.32, 55.39.

White solid (m.p.211 ⁰C). ¹H NMR (400 MHz, CDCl₃) δ = 7.71-7.67 (m, 8H, ArH), 7.49 (t, J = 8 Hz, 4H, ArH), 7.39 (t, J = 8 Hz, 3H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ = 140.74, 140.15, 128.85, 127.54, 127.38, 127.09.

White solid (m.p.88 ⁰C), HR-MS (ESI): calcd. for $C_{13}H_9N$ ([M + H]⁺) : 180.0808, found : 180.0807. ¹H NMR (400 MHz, CDCl₃) δ = 7.74-7.67 (m, 4H, ArH), 7.60 (d, J = 8 Hz, 2H, ArH), 7.51-7.41 (m, 3H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ = 145.67, 139.18, 139.02, 132.60, 129.13, 128.68, 127.74, 127.24, 118.96, 110.92.

¹H NMR (400 MHz, CDCl₃) δ = 7.54 (d, J = 8 Hz, 2H, ArH), 7.42 (t, J = 8Hz, 2H, ArH), 7.35-7.31 (m, 3H, ArH), 7.06-6.99 (m, 2H, ArH), 3.82 (s, 3H, OMe). ¹³C NMR (100 MHz, CDCl₃) δ = 156.48, 155.06, 138.56, 130.91, 130.74, 129.56, 128.62, 127.99, 126.92, 120.84, 111.24, 55.57.

¹H NMR (400 MHz, CDCl₃) δ = 7.62 (d, J = 8 Hz, 2H, ArH), 7.46 (t, J = 8 Hz, 2H, ArH), 7.37 (m, 1H, ArH), 7.25 (s, 2H, ArH), 7.05 (s, 1H, ArH), 2.43 (s, 6H, Me). ¹³C NMR (100 MHz, CDCl₃) δ = 141.49, 141.29, 138.27, 128.91, 128.65, 127.21, 127.10, 125.14, 21.44.

¹H NMR (400 MHz, CDCl₃) δ = 8.04 (d, J = 8 Hz, 2H, ArH), 7.73- 7.65 (m, 4H, ArH), 7.50 (t, J = 8 Hz, 2H, ArH), 7.45-7.41 (m, 1H, ArH), 2.67 (s, 3H, Me). ¹³C NMR (100 MHz, CDCl₃) δ = 197.80, 145.80, 139.89, 135.87, 128.98, 128.94, 128.26, 127.29, 127.24, 26.68.

White solid (m.p.69 0 C). ¹H NMR (400 MHz, CDCl₃) δ = 7.71 (s, 4H, ArH), 7.62 (d, J = 8 Hz, 2H, ArH), 7.51-7.40 (m, 3H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ = 144.76, 139.79, 129.00, 128.20, 127.44, 127.30, 125.74, 125.71.

White solid (m.p.49 0 C). ¹H NMR (400 MHz, CDCl₃) δ = 7.65 (d, J = 8 Hz, 2H, ArH), 7.54 (d, J = 8 Hz, 2H, ArH), 7.49 (t, J = 8 Hz, 2H, ArH), 7.39 (t, J = 8 Hz, 1H, ArH), 7.32 (d, J = 8 Hz, 2H, ArH), 2.46 (s, 3H, Me). ¹³C NMR (100 MHz, CDCl₃) δ = 141.21, 138.41, 137.06, 129.53, 128.76, 127.04, 127.02, 21.15.

White solid (m.p.60 ⁰C), HR-MS (ESI): calcd. for $C_{13}H_{10}O([M + H]^+)$: 183.0804 , found : 183.0808. ¹H NMR (400 MHz, CDCl₃) δ = 10.07 (s, 1H, CHO), 7.94 (d, J = 8 Hz, 2H, ArH), 7.76 (d, J = 8 Hz, 2H, ArH) , 7.65 (d, J = 8 Hz, 2H, ArH), 7.51-7.41 (m, 3H, ArH). ¹³C NMR (100 MHz, CDCl₃) δ = 191.97, 147.23, 139.74, 135.21, 130.29, 129.03, 128.49, 127.71, 127.39.

Reference:

- G. M. Sheldrick, SADABS Program for Correction of Area Detector Data; University of Göttingen: Göttingen, Germany, 1999.
 SHELXTL, Package v. 6.10, BrukerAXS, Madison and WI.

Molecular Structure of 1,3,5-triphenyl pyrazole

¹H NMR of **1,3,5-triphenyl pyrazole**

³C NMR of 1,3,5-triphenyl pyrazole

HRMS of 1,3,5-triphenyl pyrazole

¹H NMR of Palladacycle (1)

¹³C NMR of Palladacycle (1)

HRMS of Palladacycle (1)

¹H & ¹³C NMR of the isolated products

110 100 90 f1 (ppm) 160 150 140 130 120

100 90 f1 (ppm)

120 110 100 90 80 f1 (ppm)

120 110 100 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

100 90 f1 (ppm)

110 100 f1 (ppm) п 0

^{110 100} f1 (ppm)

^{120 110 100} f1 (ppm)

100 90 f1 (ppm)

110 100 90 f1 (ppm)