## **Supporting Information**

## Triazolate-based 3D frameworks and 2D layer with centrosymmetric Cu<sup>II</sup><sub>7</sub>, Cu<sup>II</sup><sub>5</sub>, Cu<sup>II</sup><sub>4</sub> clusters and tunable interlayer/interchain compactness: Hydrothermal syntheses, crystal structures and magnetic properties

Yuan-Yuan Zhang,<sup>a</sup> Hong Zhao,<sup>a</sup> En-Cui Yang,<sup>a</sup>,\* Zhong-Yi Liu,<sup>a</sup> Qiu Shang<sup>a</sup> and Xiao-Jun Zhao <sup>a, b</sup>\*

<sup>a</sup> College of Chemistry, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, P. R. China

<sup>b</sup> Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China

| Cu(1)–O(10)                                                                                                                                                                                                                                                                                                                                 | 1.922(4)   | Cu(2)–O(2) <sup>#5</sup>                     | 2.294(4)   |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------|------------|--|
| Cu(1)–O(1)                                                                                                                                                                                                                                                                                                                                  | 1.937(4)   | Cu(3)–O(10)                                  | 1.898(4)   |  |
| $Cu(1)-O(7)^{\#1}$                                                                                                                                                                                                                                                                                                                          | 1.968(4)   | Cu(3)–N(2)                                   | 1.983(5)   |  |
| Cu(1) - N(1)                                                                                                                                                                                                                                                                                                                                | 1.974(5)   | Cu(3)–N(6)                                   | 1.986(5)   |  |
| $Cu(1)-O(7)^{\#2}$                                                                                                                                                                                                                                                                                                                          | 2.352(4)   | $Cu(3) - O(9)^{\#3}$                         | 2.008(4)   |  |
| $Cu(2) - N(3)^{\#3}$                                                                                                                                                                                                                                                                                                                        | 1.959(4)   | Cu(4)–N(5)                                   | 1.931(5)   |  |
| Cu(2)–O(4) <sup>#4</sup>                                                                                                                                                                                                                                                                                                                    | 1.963(4)   | Cu(4)–O(9)                                   | 1.968(4)   |  |
| Cu(2)–N(4)                                                                                                                                                                                                                                                                                                                                  | 1.986(4)   | $Cu(5) - O(5)^{\#6}$                         | 1.908(4)   |  |
| Cu(2)–O(9)                                                                                                                                                                                                                                                                                                                                  | 2.040(4)   | Cu(5)–O(3) <sup>#7</sup>                     | 1.969(4)   |  |
| O(10)-Cu(1)-O(7) <sup>#2</sup>                                                                                                                                                                                                                                                                                                              | 98.46(16)  | $N(3)^{#3}$ – $Cu(2)$ – $O(2)^{#5}$          | 93.21(16)  |  |
| O(10)–Cu(1)–O(7) <sup>#1</sup>                                                                                                                                                                                                                                                                                                              | 88.02(16)  | $O(4)^{#4}$ – $Cu(2)$ – $O(2)^{#5}$          | 90.61(16)  |  |
| $O(1)-Cu(1)-O(7)^{\#1}$                                                                                                                                                                                                                                                                                                                     | 88.35(15)  | N(4)-Cu(2)-O(2)#5                            | 83.85(16)  |  |
| O(10)–Cu(1)–N(1)                                                                                                                                                                                                                                                                                                                            | 86.65(17)  | O(9)-Cu(2)-O(2) <sup>#5</sup>                | 118.96(16) |  |
| O(1)–Cu(1)–N(1)                                                                                                                                                                                                                                                                                                                             | 97.02(17)  | O(10)–Cu(3)–N(2)                             | 84.87(17)  |  |
| O(1)-Cu(1)-O(7) <sup>#2</sup>                                                                                                                                                                                                                                                                                                               | 80.10(15)  | O(10)–Cu(3)–N(6)                             | 96.71(17)  |  |
| $O(7)^{\#1}$ -Cu(1)-O(7) $^{\#2}$                                                                                                                                                                                                                                                                                                           | 77.93(15)  | N(2)-Cu(3)-O(9) <sup>#3</sup>                | 86.12(16)  |  |
| N(1)-Cu(1)-O(7) <sup>#2</sup>                                                                                                                                                                                                                                                                                                               | 107.12(16) | N(6)#5-Cu(3)-O(9)#3                          | 91.99(17)  |  |
| $N(3)^{#3}$ – $Cu(2)$ – $O(4)^{#4}$                                                                                                                                                                                                                                                                                                         | 96.59(17)  | N(5)-Cu(4)-O(9)                              | 89.35(17)  |  |
| N(4)-Cu(2)-O(9)                                                                                                                                                                                                                                                                                                                             | 88.95(16)  | N(5) <sup>#3</sup> –Cu(4)–O(9)               | 90.65(17)  |  |
| O(4)#4-Cu(2)-N(4)                                                                                                                                                                                                                                                                                                                           | 89.14(18)  | O(5) <sup>#6</sup> –Cu(5)–O(3)               | 91.38(17)  |  |
| N(3) <sup>#3</sup> –Cu(2)–O(9)                                                                                                                                                                                                                                                                                                              | 87.50(16)  | $O(5)^{#2}-Cu(5)-O(3)$                       | 88.62(17)  |  |
| O(4) <sup>#4</sup> –Cu(2)–O(9)                                                                                                                                                                                                                                                                                                              | 149.96(17) | O(5) <sup>#2</sup> –Cu(5)–O(3) <sup>#7</sup> | 91.37(17)  |  |
| <sup><i>a</i></sup> Symmetry codes: <sup>#1</sup> $1 - x$ , $1 - y$ , $2 - z$ ; <sup>#2</sup> $x + 1$ , $y$ , $z$ ; <sup>#3</sup> $3 - x$ , $2 - y$ , $2 - z$ ; <sup>#4</sup> $1 + x$ , $y$ , $1 + z$ . <sup>#5</sup> $2 - x$ , $2 - y$ , $2 - z$ ; <sup>#6</sup> $1 - x$ , $1 - y$ , $1 - z$ ; <sup>#7</sup> $2 - x$ , $1 - y$ , $1 - z$ . |            |                                              |            |  |

Table S1 Selected bond lengths (Å) and angles (°) for 1<sup>a</sup>

| Cu(1)–N(5)                                                                                                                      | 1.978(4)   | Cu(2)–N(6)                            | 2.012(4)   |  |
|---------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------|------------|--|
| Cu(1)-N(1)                                                                                                                      | 1.980(4)   | Cu(2)–N(8)                            | 2.166(3)   |  |
| Cu(1)–N(11)                                                                                                                     | 1.987(5)   | Cu(3)–N(2)                            | 1.920(4)   |  |
| Cu(1)–O(1)                                                                                                                      | 2.030(3)   | Cu(3)–O(1)                            | 1.964(3)   |  |
| Cu(1)–O(2)                                                                                                                      | 2.190(9)   | Cu(3)–N(9)                            | 2.459(4)   |  |
| Cu(2)–N(7) <sup>#1</sup>                                                                                                        | 1.917(2)   | Cu(4)–N(12)                           | 1.979(5)   |  |
| Cu(2)–O(1)                                                                                                                      | 1.995(3)   | Cu(4) - N(4)                          | 2.011(4)   |  |
| Cu(2)–N(3) <sup>#2</sup>                                                                                                        | 2.008(4)   | Cu(4)–O(3)                            | 2.418(7)   |  |
| N(5)–Cu(1)–N(11)                                                                                                                | 90.96(19)  | O(1) <sup>#2</sup> -Cu(3)-N(9)        | 101.43(16) |  |
| N(1)–Cu(1)–N(11)                                                                                                                | 91.01(19)  | $N(2)^{#2}-Cu(3)-O(1)$                | 89.13(15)  |  |
| N(5)–Cu(1)–O(1)                                                                                                                 | 86.03(16)  | N(2)–Cu(3)–O(1)                       | 90.87(15)  |  |
| N(1)–Cu(1)–O(1)                                                                                                                 | 91.11(16)  | $N(2)^{#2}$ -Cu(3)-N(9) <sup>#2</sup> | 89.6(5)    |  |
| O(1)–Cu(1)–O(2)                                                                                                                 | 81.3(2)    | N(2)-Cu(3)-N(9) <sup>#2</sup>         | 90.4(5)    |  |
| N(5)–Cu(1)–O(2)                                                                                                                 | 91.6(3)    | O(1)-Cu(3)-N(9) <sup>#2</sup>         | 101.4(4)   |  |
| N(1)–Cu(1)–O(2)                                                                                                                 | 89.5(3)    | $O(1)^{#2}$ -Cu(3)-N(9) <sup>#2</sup> | 78.6(4)    |  |
| N(11)-Cu(1)-O(2)                                                                                                                | 123.3(2)   | N(2)#2-Cu(3)-N(9)                     | 90.44(18)  |  |
| N(3) <sup>#2</sup> -Cu(2)-N(8)                                                                                                  | 86.56(19)  | N(2)-Cu(3)-N(9)                       | 89.56(18)  |  |
| O(1)–Cu(2)–N(8)                                                                                                                 | 84.91(13)  | O(1)-Cu(3)-N(9)                       | 78.57(16)  |  |
| $N(7)^{\#1}$ -Cu(2)-N(3) <sup>#2</sup>                                                                                          | 90.22(16)  | N(4)-Cu(4)-O(3)                       | 94.0(2)    |  |
| O(1)-Cu(2)-N(3) <sup>#2</sup>                                                                                                   | 90.02(15)  | N(12)-Cu(4)-N(4)                      | 90.07(19)  |  |
| N(7) <sup>#1</sup> -Cu(2)-N(6)                                                                                                  | 90.25(16)  | N(12)-Cu(4)-N(4)#3                    | 89.93(19)  |  |
| O(1)-Cu(2)-N(6)                                                                                                                 | 87.71(15)  | N(12)-Cu(4)-O(3)#3                    | 84.9(2)    |  |
| N(7) <sup>#1</sup> -Cu(2)-N(8)                                                                                                  | 108.42(9)  | N(4)-Cu(4)-O(3)#3                     | 86.0(2)    |  |
| N(6)-Cu(2)-N(8)                                                                                                                 | 100.71(19) | N(12)-Cu(4)-O(3)                      | 95.1(2)    |  |
| <sup><i>a</i></sup> Symmetry codes: ${}^{\#1}-x$ , $1-y$ , $-z$ ; ${}^{\#2}1-x$ , $1-y$ , $-z$ ; ${}^{\#3}-x$ , $1-y$ , $1-z$ . |            |                                       |            |  |

 Table S2 Selected bond lengths (Å) and angles (°) for  $2^{a}$ 

| Cu(1) - N(2)                                                                                                                                | 1.974(5)   | Cu(4)–O(10)                                  | 1.953(3)   |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------|------------|--|
| Cu(1)–O(9)                                                                                                                                  | 1.977(3)   | Cu(4)–O(1)                                   | 1.968(3)   |  |
| Cu(1) - N(7)                                                                                                                                | 2.006(5)   | Cu(4)–N(5)                                   | 1.984(4)   |  |
| Cu(1)-N(4)                                                                                                                                  | 2.047(4)   | Cu(4)–N(12) <sup>#3</sup>                    | 2.002(4)   |  |
| Cu(1)-O(1)                                                                                                                                  | 2.366(4)   | Cu(4) - N(3)                                 | 2.322(5)   |  |
| Cu(2)–O(6)                                                                                                                                  | 1.949(4)   | Cu(5)–N(11)                                  | 1.942(4)   |  |
| Cu(2)–O(7) <sup>#1</sup>                                                                                                                    | 1.988(4)   | Cu(5)–O(10)                                  | 1.949(3)   |  |
| Cu(2)-N(1)                                                                                                                                  | 1.989(4)   | Cu(6)–O(3) <sup>#4</sup>                     | 1.965(5)   |  |
| Cu(2)–N(9) <sup>#2</sup>                                                                                                                    | 2.017(4)   | Cu(6)–N(6)                                   | 1.980(4)   |  |
| Cu(2)–O(9)                                                                                                                                  | 2.304(4)   | Cu(6)–N(10)                                  | 1.994(4)   |  |
| Cu(3)–N(8)                                                                                                                                  | 1.947(5)   | Cu(6)–O(8) <sup>#5</sup>                     | 2.044(4)   |  |
| Cu(3)–O(9)                                                                                                                                  | 1.987(3)   | Cu(6)–O(10)                                  | 2.230(3)   |  |
| Cu(3)–O(5)                                                                                                                                  | 2.420(3)   |                                              |            |  |
| N(2)–Cu(1)–O(9)                                                                                                                             | 88.75(17)  | O(9)–Cu(3)–O(5)                              | 78.03(13)  |  |
| O(9)–Cu(1)–N(7)                                                                                                                             | 90.22(16)  | N(8) <sup>#2</sup> -Cu(3)-O(5) <sup>#2</sup> | 87.21(15)  |  |
| N(2)-Cu(1)-N(4)                                                                                                                             | 90.35(19)  | O(10)–Cu(4)–N(5)                             | 89.39(14)  |  |
| O(9)–Cu(1)–O(1)                                                                                                                             | 123.26(13) | O(1)–Cu(4)–N(5)                              | 90.15(15)  |  |
| N(7)-Cu(1)-N(4)                                                                                                                             | 93.08(19)  | O(10)-Cu(4)-N(12)#3                          | 88.99(14)  |  |
| N(2)-Cu(1)-O(1)                                                                                                                             | 83.14(17)  | O(1)-Cu(4)-N(12)#3                           | 90.49(15)  |  |
| N(7)–Cu(1)–O(1)                                                                                                                             | 92.70(16)  | O(10)-Cu(4)-N(3)                             | 100.52(16) |  |
| N(4)-Cu(1)-O(1)                                                                                                                             | 82.72(15)  | O(1)–Cu(4)–N(3)                              | 85.05(16)  |  |
| O(6)-Cu(2)-N(1)                                                                                                                             | 90.52(17)  | N(12) <sup>#3</sup> -Cu(4)-N(3)              | 105.79(19) |  |
| O(7) <sup>#1</sup> –Cu(2)–N(1)                                                                                                              | 92.76(17)  | N(11)-Cu(5)-O(10)#3                          | 88.84(15)  |  |
| O(6)-Cu(2)-N(9) <sup>#2</sup>                                                                                                               | 88.56(16)  | N(11)-Cu(5)-O(10)                            | 91.16(15)  |  |
| $O(7)^{#1}$ -Cu(2)-N(9) <sup>#2</sup>                                                                                                       | 89.82(17)  | O(3) <sup>#4</sup> –Cu(6)–N(6)               | 93.03(19)  |  |
| O(6)–Cu(2)–O(9)                                                                                                                             | 105.66(16) | O(3)#4-Cu(6)-N(10)                           | 87.16(19)  |  |
| O(7) <sup>#1</sup> –Cu(2)–O(9)                                                                                                              | 97.72(15)  | O(3) <sup>#4</sup> -Cu(6)-O(8) <sup>#5</sup> | 143.91(17) |  |
| N(1)–Cu(2)–O(9)                                                                                                                             | 86.98(17)  | N(6)–Cu(6)–O(8) <sup>#5</sup>                | 92.98(18)  |  |
| N(9) <sup>#2</sup> –Cu(2)–O(9)                                                                                                              | 89.04(16)  | N(10)–Cu(6)–O(8) <sup>#5</sup>               | 90.29(17)  |  |
| N(8)–Cu(3)–O(9) <sup>#2</sup>                                                                                                               | 91.01(16)  | O(3) <sup>#4</sup> –Cu(6)–O(10)              | 121.80(16) |  |
| N(8)–Cu(3)–O(9)                                                                                                                             | 88.99(16)  | N(6)–Cu(6)–O(10)                             | 87.09(15)  |  |
| N(8)–Cu(3)–O(5)                                                                                                                             | 87.22(15)  | N(10)–Cu(6)–O(10)                            | 87.83(15)  |  |
| N(8) <sup>#2</sup> –Cu(3)–O(5)                                                                                                              | 92.79(15)  | O(8) <sup>#5</sup> –Cu(6)–O(10)              | 94.03(15)  |  |
| $O(9)^{#2}-Cu(3)-O(5)$                                                                                                                      | 101.97(13) | N(5)–Cu(4)–N(3)                              | 84.18(18)  |  |
| <sup><i>a</i></sup> Symmetry codes: ${}^{\#1}-x$ , $2-y$ , $-z$ ; ${}^{\#2}-x$ , $1-y$ , $-z$ ; ${}^{\#3}1-x$ , $1-y$ , $1-z$ ; ${}^{\#4}x$ |            |                                              |            |  |
| +1, y, z; <sup>#5</sup> $1-x, 2-y, -z.$                                                                                                     |            |                                              |            |  |

**Table S3** Selected bond lengths (Å) and angles (°) for  $3^{a}$ 

| Cu(1)–O(5)                     | 1.8872(18) | $Cu(2)-O(3)^{\#2}$                    | 1.9722(17) |
|--------------------------------|------------|---------------------------------------|------------|
| Cu(1)–O(6)                     | 1.9353(17) | Cu(2)–N(3) <sup>#1</sup>              | 1.984(2)   |
| Cu(1)–O(2)                     | 1.9353(18) | Cu(2)–O(6)                            | 2.2555(18) |
| Cu(1)–O(3) <sup>#2</sup>       | 2.6166(2)  | Cu(2)–O(6) <sup>#1</sup>              | 1.9588(18) |
| Cu(1)–N(2)                     | 1.957(2)   | Cu(2)–O(1)                            | 1.9516(18) |
| Cu(3)–O(5)                     | 1.9019(19) | Cu(3)–N(1)                            | 1.997(2)   |
| O(5)–Cu(1)–O(2)                | 89.66(8)   | $O(6)^{#1}$ -Cu(2)-N(3) <sup>#1</sup> | 88.69(8)   |
| O(6)–Cu(1)–O(2)                | 97.45(7)   | O(1)-Cu(2)-N(3) <sup>#1</sup>         | 89.01(8)   |
| O(5)-Cu(1)-N(2)                | 86.80(8)   | $O(6)^{#1}$ -Cu(2)-O(3) <sup>#2</sup> | 92.71(7)   |
| O(6)–Cu(1)–N(2)                | 86.81(8)   | O(1)–Cu(2)–O(6)                       | 97.47(7)   |
| O(3) <sup>#2</sup> –Cu(2)–O(6) | 89.04(7)   | O(6) <sup>#1</sup> -Cu(2)-O(6)        | 81.79(7)   |
| $N(3)^{\#1}-Cu(2)-O(6)$        | 103.24(8)  | O(5)-Cu(3)-N(1)#3                     | 91.69(8)   |
| $O(1)-Cu(2)-O(3)^{\#2}$        | 89.82(8)   | O(5)-Cu(3)-N(1)                       | 88.31(8)   |

**Table S4** Selected bond lengths (Å) and angles (°) for  $4^{a}$ 



Fig. S1 FT-IR spectra of 1–4.



Fig. S2 3D framework of 1.



Fig. S3 Connectivity of  $Cu^{II}_5$  cluster and  $ip^{2-}$  ligand in 3.



Fig. S4 3D supramolecular structure for 4.





Fig. S6 Simulated (purple) and experimental (blue) PXRD patterns for 1(a)-4(d).

| Coupling constant     | Pathway  | $r_{\mathrm{Cu}\cdots\mathrm{Cu}}/(\mathrm{\AA})$ | heta / ° | ∠CuOCu / °  | ∠CuNN / °   |
|-----------------------|----------|---------------------------------------------------|----------|-------------|-------------|
|                       | Cu1…Cu3  | 3.3935(5)                                         | 2.744    | 125.319(12) | 123.750(14) |
|                       |          |                                                   |          |             | 118.709(15) |
|                       | Cu2A…Cu3 | 3.4231(5)                                         | 15.423   | 115.499(12) | 125.028(15) |
| L                     |          |                                                   |          |             | 118.780(16) |
| 51                    | Cu2A…Cu4 | 3.3599(8)                                         | 16.576   | 113.910(11) | 125.050(16) |
|                       |          |                                                   |          |             | 117.331(15) |
|                       | Cu3…Cu4  | 3.2215(6)                                         | 31.450   | 108.251(12) | 124.092(17) |
|                       |          |                                                   |          |             | 113.494(14) |
| I.                    | Cu1…Cu2A | 5.6892(10)                                        | 12.693   |             |             |
| <i>J</i> <sub>2</sub> | Cu2…Cu3  | 5.6229(9)                                         | 15.423   |             |             |

 Table S5 Magnetostructural parameters for 1

\* $\theta$  represents the dihedral angle of two Cu<sup>II</sup> ion-generated planes.



law).

