Supporting information Using a low temperature crystallization process to prepare anatase TiO₂ buffer layers for air-stable inverted polymer solar cells Jen-Hsien Huang,¹ Hung-Yu Wei,² Kuan-Chieh Huang,³ Cheng-Lun Chen,³ Rui-Ren Wang⁴ Fang-Chung Chen,⁵ Kuo-Chuan Ho,^{2,3,a)} and Chih-Wei Chu^{1,5,b)} ¹ Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan 11529 ² Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan 106 ³ Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 106 ⁴Energy Textiles Section Department of Products, Taiwan Textile Research Institute, Taipei, Taiwan 236 ⁵Department of Photonics National Chiao Tung University, Hsinchu, Taiwan 300 Figure S1. The performance of the BHJ devices with ${\rm TiO_2}$ annealed at different temperatures. Figure S2 (a, b) the SEM images for the TiO_2 film annealed at 150 °C (HPC). (c, d) the SEM images for the TiO_2 film annealed at 500 °C. Figure S3 The AFM images of the BHJ devices fabricated with TiO_2 annealed at (a) 500 °C and (b) 150 °C (HPC).