Electronic Supplementary Information

Temperature Dependence of Oxygen Reduction Activity at Nafion-Coated Pt/Graphitized Carbon Black Catalysts Prepared by the Nanocapsule Method

Hiroshi Yano^{*a*}, Tomohiro Akiyama^{*b*}, Hiroyuki Uchida^{*a,c*} and Masahiro Watanabe^{*a*}

^aFuel Cell Nanomaterials Center, ^bInterdisciplinary Graduate School of Medicine and Engineering, ^cClean Energy Research Center, University of Yamanashi, 4 Takeda, Kofu 400-8510, Japan

Fig. S1 Cyclic voltammograms on Nafion-coated n-Pt/GC, c-Pt/GC and c-Pt/CB electrodes in 0.1M HClO₄ solution purged with N₂ at 30°C. Potential sweep rate = 0.1 V/s. The values of electrochemical active surface area (*S*) evaluated from the electrical charge for the hydrogen desorption wave $Q_{\rm H}$ were 0.16 cm² (n-Pt/GC), 0.25 cm² (c-Pt/GC), and 0.21 cm² (c-Pt/CB).

Fig. S2 Tafel plots [*E* vs log j_{LCC}] for the ORR at Nafion-coated n-Pt/GC, c-Pt/GC and c-Pt/CB electrodes at (A) 30 °C, (B) 50 °C, and (C) 70 °C obtained from hydrodynamic voltammograms for ORR in O₂ saturated 0.1 M HClO₄ solution. j_{LCC} is $I_L \times I/S(I-I_L)$, where I_L is the limiting current, *I* is the current given at each potential, and *S* is the electrochemical active surface area. Mean flow rate of electrolyte solution $U_m = 15 \text{ cm s}^{-1}$.

Fig. S3 Γ^{-1} vs $U_{\rm m}^{-1/3}$ plots obtained from hydrodynamic voltammograms for the ORR at (**a**) 0.80, (**b**) 0.76, and (**c**) 0.70 V vs RHE on (A) n-Pt/GC, (B) c-Pt/GC, and (C) c-Pt/CB electrodes in O₂-saturated 0.1 M HClO₄ solution at 30 °C.

Fig. S4 X-ray diffraction patterns of pristine powders of n-PtGC, c-Pt/GC, and c-Pt/CB catalyst.

Fig. S5 Illustration of "territories" (radial diffusion fields) of (A) n-Pt/GC and (B) c-Pt/GC catalyst particle relating to the reactant O₂.