Supplementary information

Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria

Zhengxu Gao^{*a,b,#*}, Hui Zhao^{*a,#*}, Zhimin Li^{*a*}, Xiaoming Tan^{*a*} and Xuefeng Lu^{**a*}

¹Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
²Graduate School of Chinese Academy of Sciences, Beijing 100049, China

Contents

Table S1 Page2

Table S2 Page3

Table S3 Page5

Table S4 Page6

Figure S1 Page7

Figure S2 Page10

Figure S3 Page11

Figure S4 Page12

References Page13

Strain	Relevant genotype	Reference
PCC6803	Synechocystis sp.PCC6803 wild type	1
PCC7120	Anabaena sp. PCC 7120 wild type	1
PCC7942	Synechococcus sp.PCC7942 wild type	1
Syn-LY2	slr0168::Omega	1
Syn-XT43	<i>slr0168</i> ::Omega P _{rbc} <i>pdc</i> and <i>adh II</i>	This study
Syn-ZG25	slr0168:: Omega P _{rbc} pdc and slr1192	This study
Syn-HZ23	slr9394::Kan P _{rbc} pdc and slr1192	This study
Syn-HZ24	slr9394::Kan P _{rbc} pdc and slr1192	This study
	slr0168:: Omega P _{rbc} pdc and slr1192	
Plasmid	Relevant properties	
pMD18-T	AP ^r ; cloning vector	Takara
pET28-b	Km ^r ; containing 6×His tag	Novagen
pFQ20	Ap ^r Sp ^r ; slr0168 targeting vector; Omega	1
pMSD15	Cm ^r ; pACYA184 derivative	2,3
pXT5	Km ^r ; P _{T7} :: <i>adh II</i>	This study
pXT113A	Km ^r ; P _{T7} :: <i>slr1192</i>	This study
pZG35	Km ^r ; P _{T7} :: Synpcc7942_0459	This study
pZG36	Km ^r ; P _{T7} :: <i>all0879</i>	This study
pZG37	Km ^r ; P _{T7} :: <i>alr0895</i>	This study
pZG38	Km ^r ; P _{T7} :: <i>alr0897</i>	This study
pZG39	Km ^r ; P _{T7} :: <i>slr0942</i>	This study
pZG40	Km ^r ; P _{T7} :: <i>sll0990</i>	This study
pZG41	Km ^r ; P _{T7} :: <i>all2810</i>	This study
pZG42	Km ^r ; P _{T7} :: <i>all5334</i>	This study
pZG62	Cm ^r Sp ^r ; P _{T7} :: <i>pdc</i>	This study
pZG63	Km ^r ; P _{T7} :: <i>slr1192</i> , <i>alr0895</i>	This study
pZG64	Km ^r ; P _{T7} :: <i>adh II</i> , <i>slr1192</i>	This study
pZG65	Km ^r ; P _{T7} :: <i>alr0895</i> , <i>adh II</i>	This study
pZG66	Km ^r ; P _{T7} :: <i>alr0895</i> , <i>adh II</i> , <i>slr1192</i>	This study
pZG25	Ap ^r Sp ^r ; <i>slr0168</i> targeting; P _{rbc} :: <i>pdc</i> , <i>slr1192</i>	This study
pHZ22	Ap ^r Km ^r ; containing <i>slr9394</i> homologous arm	This study
pHZ23	Ap ^r Km ^r ; <i>slr9394</i> targeting; P _{rbc} :: <i>pdc</i> , <i>slr1192</i>	This study

Table S1 Stains and plasmid used and constructed in this study

Primers	Sequence (5'→3')
pdcF	GGCATATGAGTTATACTGTCGGTACCTATTTAGCGG
pdcR	GGTACTAGTCTAGAGGAGCTTGTTAACAGGCT
1192F	TACATATGATTAAAGCCTACGCTGCCCT
1192R	TTTCTCGAGCTAATTTTTACTATGGCTGAGCACTAC
93F	GGGGACCATCCTGACTACACGG
93R	TTCCAATGCCATGGGTTGGGAT
94F	GTAGCCATGGTAGCTATGTCACCG
94R	TGTTGATGGTGGGTATCGTGGTG
rbcL-T	TAATAACTGTCTCTGGGGGCGACGG
0168-1	ACCTCTCCACGCTGAATTAG
0168-2	TTCCAGGCCACATTGTTGTC
dc92F	CTGGATGAACCCTTTACCCGCTTA
dc92R	TTTCTCGAGCTAATTTTTACTATGGCTGAGCACTAC
adhF	GGCATATGGCTTCTTCAACTTTTTATATTCCTTTCGTC
adhR	GCGCTCGAG TTAGAAAGCGCTCAGGA
0459F	TACATATGAAATCACGCGCTGCGAT
0459R	TTAAAAGGTGATGACGGTGCGAAT
0879F	GACATATGCGCGCCATGATTTTAGA
0879R	ATCTCGAGTCACTTCATCACTAAAACG
0895F	AGCATATGAAAGCAGTCTGCTGG
0895R	ATCTCGAGTTACGGTTTGAGTACAACT
0897F	TACATATGAAAGCAGTTTGCTGGC
0897R	ATCTCGAGTTAGGGTTTGAGTACAAC
0942F	GCCATATGCAGAGTTTCAATAGG
0942R	AGCTCGAGTTAAATTTCATCCCATAGG
0990F	TACATATGAAATCCCGTGCCGCC
0990R	ATCTCGAGTTAGTAGTGGATCACACT
2810F	CACATATGGAAGTGAAAGCAGCAA
2810R	CTCTCGAGTTAAAAAGTCACCACACT

Table S2 Oligonucleotide primers used in this study

5334FGCCATATGAAAGCAGTTGTTTT5334RACCTCGAGCTAAACATTAGCTAAAGC

Plasmid	Gene name	Cyanobacteria type
pXT113A	slr1192	Synechocystis sp. PCC6803
pZG35	Synpcc7942_0459	Synechococcus sp. PCC7942
pZG36	all0879	Anabaena sp. PCC7120
pZG37	alr0895	Anabaena sp. PCC7120
pZG38	alr0897	Anabaena sp. PCC7120
pZG39	slr0942	Synechocystis sp. PCC6803
pZG40	s110990	Synechocystis sp. PCC6803
pZG41	all2810	Anabaena sp. PCC7120
pZG42	all5334	Anabaena sp. PCC7120

Table S3 Nine a	lcohol dehydrogenases	from three dif	ferent cyanobacteria
DI 'I	a		

Strain	Genotype	Doubling	Final
		time (g/h)	OD ₆₀₀
E. coli (pZG62)	pdc	3.54 ± 0.38	0.94
E. coli (pZG62+pXT5)	pdc+adhII	2.91±0.27	2.02
E. coli (pZG62+pXT113A)	pdc+slr1192	2.91 ± 0.30	2.67
E. coli (pZG62+pZG35)	<i>pdc</i> +Synpcc7942_0459	3.24 ± 0.08	2.22
<i>E. coli</i> (pZG62+ pZG36)	pdc+all0879	3.05 ± 0.35	2.53
<i>E. coli</i> (pZG62+ pZG38)	pdc+alr0897	2.54 ± 0.37	2.43
<i>E</i> . <i>coli</i> (pZG62+ pZG42)	pdc+all5334	2.68 ± 0.14	2.49
<i>E. coli</i> (pZG62+ pZG37)	pdc+alr0895	3.16 ± 0.22	2.65
<i>E. coli</i> (pZG62+ pZG39)	pdc+slr0942	2.82 ± 0.29	3.18
<i>E. coli</i> (pZG62+ pZG40)	pdc+sll0990	3.41 ± 0.16	2.27
<i>E. coli</i> (pZG62+ pZG41)	pdc+all2810	3.08 ± 0.39	2.43
<i>E. coli</i> (pZG62+ pZG63)	pdc+alr0895+slr1192	2.65 ± 0.30	2.53
<i>E. coli</i> (pZG62+ pZG64)	pdc+adhII+slr1192	3.24 ± 0.27	2.66
<i>E. coli</i> (pZG62+ pZG65)	pdc+adhII+alr0895	2.64 ± 0.21	2.25
<i>E. coli</i> (pZG62+ pZG66)	pdc+adhII+alr0895+slr1192	2.84 ± 0.34	2.00

Table S4 The doubling time of *E. coli* strains with expression of pyruvatedecarboxylase and different alcohol dehydrogenases

Figure S1 PCR Identification of the genotype of four ethanol producing strains. The primers used in this section were listed in Table S2.

A) Genotype analysis of Syn-XT43. Lane1: DNA Ladder. Lane 2-5: wild type DNA was used as the template in PCR. Lane 6-9: the genome DNA of Syn-XT43 was used as the template. Primers 0168-1 and 0168-2, which are specific to the N- and C-terminal of *slr0168* locus respectively, were used in lane 2 and 6. This result indicated the expression cassette was inserted into the *slr0168* site of the genome with an approximate length of 7,500 bp, and the mutant Syn-XT43 was completely segregated. Primers rbcL-T (specific to P_{rbc} promoter) and 0168-2 (specific to the *slr0168* C-terminal) were used in lane 3 and 7. Primers pdcF(specific to the N-terminal of *pdc* gene) and 0168-2 (specific to the *slr0168* C-terminal) were used in lane 5 and 9. These results indicated the *pdc* and *adh II* expression cassette was successfully inserted into the *slr0168* site of the genome in the order of P_{rbc} , *pdc* and *adhII*.

- B) Genotype analysis of Syn-ZG25. Lane1: DNA Ladder. Lane 2-5: wild type DNA was used as the template. Lane 6-9: the genome DNA of Syn-ZG25 was used as the template. Primers 0168-1 and 0168-2 were used in lane 2 and 6. This result indicated the expression cassette was inserted into the *slr0168* site of the genome with an approximate length of 7,300 bp, and the mutant Syn-ZG25 was completely segregated. Primers rbcL-T and 0168-2 were used in lane 3 and 7. Primers pdcF and 0168-2 were used in lane 4 and 8. Primers 1192F (specific to the N-terminal of *slr1192* gene) and 0168-2 were used in lane 5 and 9. These PCR results indicated the *pdc* and *slr1192* expression cassette was successfully inserted into the *slr0168* site of the genome in the order of *P_{rbc}*, *pdc* and *slr1192*.
- C) Genotype analysis of Syn-HZ23. Lane1: DNA Ladder. Lane 2-5: wild type DNA was used as the template. Lane 6-9: the genome DNA of Syn-HZ23 was used as the template. Primers 93F and 94R, which are specific to the N- and C-terminal of *slr9394* (or *phaAB*) locus respectively, were used in lane 2 and 6. This result indicated the expression cassette was completely inserted into the *phaAB* site of the genome with an approximate length of 8,000 bp, and the mutant Syn-HZ23 was completely segregated. Primers rbcL-T and 94R were used in lane 3 and 7. Primers pdcF and 94R were used in lane 4 and 8. Primers 1192F and 94R were used in lane 5 and 9. These PCR results indicated the *pdc* and *slr1192* expression cassette was successfully inserted into the *phaAB* site of the genome in the order of *P_{rbc}*, *pdc* and *slr1192*.
- D) Genotype analysis of Syn-HZ24. Lane1: DNA Ladder. Lane 2-9: wild type DNA was used as the template. Lane 10-17: the genome DNA of Syn-HZ24 was used as the template. Primers 0168-1 and 0168-2 were used in lane 2 and 10. Primers rbcL-T and 0168-2 were used in lane 3 and 11. Primers pdcF and 0168-2 were used in lane 4 and 12. Primers 1192F and 0168-2 were used in lane 5 and 13. These PCR result indicated the *pdc* and *slr1192* expression cassette was completely inserted into the *slr0168* site of the genome in the order of P_{rbc} , *pdc* and *slr1192*. Primers 93F and 94R were used in lane 6 and 14. Primers rbcL-T and 94R were used in lane 7 and 15. Primers pdcF and 94R were used in lane 8 and 16.

Primers 1192F and 94R were used in lane 9 and 17. And these PCR result indicated the *pdc* and *slr1192* expression cassette was completely inserted into the *phaAB* site of the genome in the order of P_{rbc} , *pdc* and *slr1192*.

Figure S2 The SDS-PAGE gel of *adh II*, *slr1192*, *all0879* and Synpcc7942_0459 purification. (A) The gel of *adh II*, lane 1: protein marker, lane 2: crude extract, lane 3: the protein through the Ni-NTA resin, lane 4-6: the target protein eluted by Tris buffer containing 100mM iminazole (B) The gel of *slr1192*, lane 1: protein marker, lane 2: crude extract, lane 3-10: the protein eluted by Tris buffer containing 250 mM iminazole (C) The gel of *all0879*, lane1: protein marker, lane 2: crude extract, lane 4 and 5: the target protein eluted by Tris buffer containing 100 mM iminazole (D) The gel of Synpcc7942_0459, lane 1: protein marker, lane 2-9: the target protein eluted by Tris buffer containing 250 mM iminazole.

Figure S3 Western blot analysis of protein expression in *E. coli* mutants with heterologous overexpression of pyruvate decarboxylase from *Zymomonas mobilis* and different alcohol dehydrogenases.

Lane 1: protein marker. Lane 2: the total proteins in wild type *E.coli* as a negative control. Lane 3: the purified alcohol dehydrogenase (*slr1192*) from *Synechocystis* sp. PCC6803 as a positive control. Lane 4: the purified pyruvate decarboxylase (*pdc*) from *Zymomonas mobilis* as another positive control. Lane 5 through lane 14 showed the results of the total protein extracts from *E. coli* mutant harboring *pdc* and *adh II* genes (lane 5); *pdc* and *slr1192* genes (lane 6); *pdc* and Synpcc7942_0459 genes (lane 7); *pdc* and *all0879* genes (lane 8); *pdc* and *alr0895* genes (lane 9); *pdc* and *alr0897* genes (lane 10); *pdc* and *slr0942* genes (lane 11); *pdc* and *sll0990* genes (lane 12); *pdc* and *all2810* genes (lane 13); *pdc* and *all5334* genes (lane 14), respectively.

Figure S4 The column photo-bioreactor (A) and condensation device (B) used for exact determination of the ethanol production in cyanobacteria.

References

- 1. X. Tan, L. Yao, Q. Gao, W. Wang, F. Qi and X. Lu, *Metab Eng*, 2011, **13**, 169-176.
- 2. Y. Duan, Z. Zhu, K. Cai, X. Tan and X. Lu, *PLoS One*, 2011, 6, e20265.
- 3. X. Lu, H. Vora and C. Khosla, *Metab Eng*, 2008, **10**, 333-339.