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Derivation 

 

Outline of approach and homogeneity approximation 

We would like to outline the general methodology to help the reader identify the forest from the 

trees in the derivation below. The crux of our approach has three sequential elements: 

1. Treat single-nanotube properties that are relevant to the network performance as random 

variables. The priority properties are position, length, orientation, and chirality. The network 

is defined by the distribution of those parameters. 

2. Derive the network behavior from single-SWNT physics as a function of those parameters by 

performing irradiance, exciton, and free carrier balances. That produces sets of differential 

equations dependent on the single-SWNT properties. 

3. Integrate those differential equations over the distributions of those properties (e.g. integrate 

over the orientation distribution). That integration is equivalent to summing up the 

contributions to the balances from each independent population of nanotubes with each 

possible value of the random variables. 

This treatment is only valid under an approximation of macroscopic homogeneity; it implicitly presumes 

that if you take a slice of the film that is large enough to observe the film’s steady state observation, that it 

will contain the same distribution of properties regardless of where you take the slice. Experimentally, 

that behavior has been observed with conductivity.
1
 That not only constrains our application of the model 

to films with densities above the percolation threshold, but also excludes cases where the film is highly 

porous or otherwise exhibits clusters of density, length, chirality, or orientation. It is possible to relax this 

approximation and treat such cases – see the section Breakdown of Macroscopic Homogeneity – but in 

this work we focus on taking the approximation.  

 

 

Notation 

 

Bold ( ) denotes a vector quantity, which may be represented in Cartesian  

(1)    (        )     ̂     ̂     ̂  

or spherical  

(2)    (     )                                 

coordinates. We will switch between spherical and Cartesian coordinates for convenience without 

comment for brevity – which is used should be clear from the context. The space on which a vector is 

defined varies by context, for example   (     ) is the chirality of a nanotube with chiral indices    

and   . Hats ( ̂) denote unite vectors. Subscripts       will be used to denote the scalar components of a 

vector in the corresponding Cartesian axis. Unbolded variables ( ) corresponding to vectors are the 

magnitudes of those vectors.  

Density functions of a random variable are denoted  ( ). Mean values are bracketed as ⟨ ⟩. 
Network Geometry 

 

We consider a network of single-walled nanotubes (SWNT) sandwiched between two electrode 

plates (Figure 1a). We define a cartesian   axis as perpendicular to the incident solar photon flux    at 

    (the ‘top’ of the film), with      being the depth of the film up to thickness   and the film being 

infinite in cartesian dimensions   and  . In practice the solar flux may be incident at an angle, which 

would be further altered by the top electrode index of refraction. These considerations merely change the 

boundary conditions of the light field problem below. The back electrode has reflectance
1
       

which can in general be frequency dependent. A variety of conduction and valence band charge collecting 

electrode (type II exciton dissociation interface) configurations are possible (Figure 1c), including those 

                                                      
1
 Specular reflectance; we neglect diffuse reflection as a simplification in our treatment. 
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where an electrode also acts as a photoabsorbing layer (e.g., fullerenes, references 
2, 3

). We focus on the 

relatively general case of two dissociating electrodes (first cartoon in Figure 1c), but the model for the 

SWNT network applies to any other case by corresponding adjustment of the boundary conditions (next 

sections). Particular material selection and band alignment issues associated with exciton dissociation are 

well outside the scope of this work, and instead we take the electrode properties as given.
4
 

 

 
Figure 1. Cartoon of model geometry. See text for description. 

Throughout this work we adopt several spatial coordinate references (Figure 1b). An individual 

nanotube, which we approximate as a rigid rod, has a length and orientation described by the vector in 

spherical coordinates as   (     ), or equivalently in Cartesian coordinates 

(3)  

  (        ) 

             

             

          

 

In relation to our global coordinate system the center of each nanotube is located at    relative to 

an arbitrary origin in the    plane at    . The ends of a single SWNT are therefore located, relative to 

the origin, at the ends of vectors    
 

 
 . The set of points along the central axis of the SWNT is then 

constrained as 

(4)  {  |   (   
 

 
)      [   ]}  

 

In describing intra-SWNT mechanics we will also consider the one-dimensional space along a nanotube 

axis, the coordinate along which we will denote    [   ]. Each    corresponds with an    via        
and Equation (4); there is a bijective map between {  } and {  }.  A nanotube also has a chirality   
(     ) where    and    are chiral indices.

5
 For convenience we index all chiralities present in the 

network by integer   (chirality   ) in order of increasing exciton (optical) band gap        . The center-

center diameter of chirality   is approximately 

(5)         
  

 
√  
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where                  is the graphene lattice constant.
5
 The effective outer diameter    is 

estimated as the diameter within which the bulk of the electron shell resides, ~0.335 nm greater than 

       for tubes with              , based on the thickness of graphene.
6
 

 The properties {      } completely define a given nanotube in our network. Our approach begins 

with treating these parameters as random variables, defining a given film by their distributions: 

(6)  

 (  | )   (           | ) 

 ( )   ( )   (   ) 

 (  )     [   ] ∑  

 

   

 

where    is the number fraction of chirality   in the film. In theory any of the distributions can be 

dependent on the others depending on the nanotube and film fabrication processes; we focus on cases 

where they are uncorrelated, but the derivation is general for correlated distributions. We will generate 

forms of these distributions for different relevant cases – e.g. isotropic, vertically aligned, horizontally 

aligned, monochiral, mSWNT impurities, short SWNT, long SWNT, etc. when we apply the model to 

relevant cases (see main paper). Our derivation is also general for cases where all of these properties vary 

systematically with depth, i.e.  (      | ), but in most practical applications  ( ) and  (  ) are spatially 

invariant. Note we are also implicitly assuming that SWNT locations are independent, even though in 

some film casting processes they can be correlated; this phenomenon represents an important shortcoming 

of our model, and is discussed further along in the derivation and in the section Breakdown of 

Macroscopic Homogeneity. 

 

Light Field 

 

At any given point   (     )  ((    ) (    ) [   ]) there is a total photon flux   ( ) 

that is distributed over (as   (     | ) , i.e. irradiance) frequency  , linear polarization component 

  (     ), and propagation direction   (     ),
7
 i.e.  

(7)    ( )  ∫ ∫ ∫ ∫   (     | )   

  

 

   

 

 

   

 

 

  

 

 

  

 

We do not consider magnetic field effects in this model, although it could be introduced analogously to 

the electric field if desired subject to      . Over our length-scales of interest (< 1   ) for SWNT 

material, we neglect electric-field phase shifts such as circular dichroism that introduce and/or manipulate 

circular polarization components to the light field.  

Distributions in polarization and propagation direction of electromagnetic radiation are not 

independent, they are orthogonal,  

(8)          

reducing our degrees of freedom by one, leaving only 3 independent dimensions. In practice all four 

coordinates can be effectively taken as independent if proper ‘accounting’ is done in all the mechanics that 

follow – i.e. manipulations of the distributions of   are accompanied by appropriate transformation of the 

distributions of   and vice versa. Alternatively, that implicit dependency can be made explicit. For 

example, I take (        ) as the independent set, and trigonometrically extract    as a function of 

them:  

(9)  

      

                

                                          

               

 

yielding 

(10)    (        )           (          )   
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As an example of how this basis practically manifests itself, consider a function  ( )   (     ). We 

can evaluate its first moment at   

(11)  

⟨ (     )⟩  ∫  ( )   ( | )
 

  

 ∫ ∫  (     )  (     | )   

  

 

   

 

 

 ∫ ∫ ∫  (     (        ))  (        | )
  

 

   

 

 

      

 

 

 

 

where  

(12)    (        | )  ∫   (     | )  
 

 

  
 

 The SWNT network can interact with the field through three predominant mechanisms: 

1. Absorption, generating excitons of energy   . 

2. Rayleigh scattering, shifting the distribution of propagation vectors   ( | ). 

3. Photoluminescence (PL), radiative decay of excitons to contribute to the photon flux at the energy 

of the band gap     , position of the relaxation, and polarization of the transition dipole. 

All three phenomena could be included in the derivation that follows, but to first order we neglect the 

latter two; omitting reflection allows us to remove   from our calculations, and omitting PL greatly 

simplifies coupling to the exciton transport equations. The former case we will show below, and the latter 

in the next section. See the Consideration of Rayleigh Scattering and Photoluminescence section below 

for consideration of the consequences of this choice. 

 To treat attenuation of the field we must derive the linear-polarization- and frequency-dependent 

absorption cross-section of the film from the single-SWNT absorption behavior. The absorption cross-

section of SWNT of chirality   can be broken down as 

(13)   (     )  
 (     )

  (     )
 

 

where   is the photon absorption rate at that polarity and frequency, and   and   are normalized per 

atom C or mole C (with no length dependence, see references 
8, 9

). Theoretical evaluation of absorbance is 

possible,
10

 but given sources of variation, such as dependence on the electric and dielectric environment,
2, 

11-13
 empirical measurement,      (     ),

13-16
 is most immediately appealing. Of relevance theoretically 

is the polarization dependence. A time-dependent perturbation theory treatment of the light-matter 

interaction yields, to first order under the dipole approximation,
17

 

(14)   (   )  |     |
 
 (     )  

where     is the transition dipole between initial and final electronic states, ⟨ | ̂| ⟩,    is the energy of 

ground state | ⟩, and  ( ) is the density of states at energy  . Electronic transitions in SWNT exist with 

dipoles parallel and perpendicular to the longitudinal axis (the latter could be called axial as well). The 

latter set contribute only ~1/5
th
 of the total absorbance (integrated across all  ), largely due to the 

depolarization effect.
5, 18

  

These transitions provide us with two orthogonal sets of polarization dependence: 

(15)   (     ̂  )  |    (   )|
 
 |    (   )|    

where    and    are sums of all the dipole moments for transitions of energy    oriented parallel and 

perpendicular, respectively, to the longitudinal SWNT axis. We therefore effectively have two 

experimentally- or theoretically-determined absorption cross-section functiona    and   , giving us a total 

absorption cross-section for a single SWNT of orientation  ̂  (   ) as 

(16)   (     ̂  )  |   ̂|
 
  (   )  (  |   ̂|)

 
  (   )   
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where the second coefficient has a simple form because both polarization and orientation are unit vectors, 

and any component of linear polarization not parallel to the SWNT axis is necessarily in the plane 

perpendicular to it. We will define our coefficients for convenience as 

(17)    (         )     ̂  

(18)    (         )      (         )   

In the derivation that follows we will find that normalizing   per length,   , rather than carbon 

units is more convenient. For   per mole of C, as is more usually reported, we can convert readily. The 

SWNT circumference is 

(19)    (
 

 
      )            

 

which gives us 

(20)  
 

  
               

 

moles of carbon per length of SWNT of chirality  , where    is avogadro’s constant and        is the 

density of graphene. This relation gives us 

(21)    (   ̂    )  
 

  
                (   ̂    )  

 

This conversion is approximate as it neglects bond stress relaxation from curvature, and so measured 

constants can be used when available; for (6,5) SWNT this estimates             carbon atoms per 

length versus              measured in reference 
16

. 

 We can now consider the network. In the remainder of the derivation, two spatial magnifications 

will be traversed, and the transition between the two will define much of the approach. At the 

‘macroscopic’ scale,   (      ), where the diameter of the nanotubes is negligible, we approximate 

that the film is essentially homogenous. At the ‘microscopic’ scale, on the order of   , heterogeneity in 

the local environment is highly relevant. There are realistic situations where the homogeneity 

presumption in a strict sense breaks down; the circumstances and impact of that error, as well the means 

of relaxing the assumption (accounting for macroscopic heterogeneity), are laid out in the section 

Breakdown of Macroscopic Homogeneity below. 

From the perspective of the gradient in the light field, the diameter of the SWNT is negligible and 

the film is essentially homogenous. The length-density of SWNT we will define as the length of SWNT 

per volume of the film, 

(22)   ⟨ ⟩  ∫      ( )  
 

 

   ⟨ ⟩  
 

where   is the number density of SWNT and ⟨ ⟩ is the average length of SWNT. Without any depth-

variation in density, the absorption cross-section per volume of film due to SWNT of chirality   and 

orientation  ̂ is 

(23)      ⟨ ⟩    (   ̂     )   

where    ⟨ ⟩ can be understood as the density of chirality   in the film. Note that we are omitting explicit 

dependence on the dielectric environment of each SWNT; that is justifiable under homogeneity if    and 

   are measured in or corrected for the appropriate state, but alternatively    can be conditioned on local 

dielectric constant and integrated over the distribution of it. 

A reader familiar with SWNT literature will be more accustomed to seeing quantities liked 

density expressed in atom or mole Carbon units, rather than by length. That treatment is entirely 

equivalent to using the length of SWNT, mediated by the carbon atoms per length SWNT, so long as 

chirality is appropriately accounted for. The per-length quantities however are more useful, as we will see, 

in translating between one-dimensional and three-dimensional diffusion, where we care about the length 

of the SWNT present independent of the number of carbon atoms. 

 For irradiance   (     | ) the photon absorption rate per volume due to SWNT of chirality   

oriented in  ̂ are 



7 

 

(24)    (       ̂| )      ⟨ ⟩    (   ̂     )    (     | )   

To get the total film absorption rate we must sum absorption terms (24) for nanotubes at each possible 

orientation  ̂ and chirality  , weighted by the relative populations of each. That is equivalent however to 

integrating over the distribution  ( ̂)  (and summing over chiralities), forming the crux of our 

methodology, 

(25)  

 (     | )  ∑∫  ( )∫  ( )   (       ̂| )   

 

 

  

  

  

 ∑  ∫  ( )∫  ( )  ⟨ ⟩  (   ̂     )  (     | )   

 

 

  

  

  

  ⟨ ⟩  (     | )∑  ∫  ( )∫  ( )   (   ̂     )   

 

 

  

  

  

  ⟨ ⟩  (     | )∑    (      )

 

  

 

In this manner, we can describe the light interaction behavior of the film by integrating the single-SWNT 

behavior over the distribution of independent single-SWNT properties. We will take the same approach to 

exciton and free carrier transport below, where will also consider its utility in more depth. In the last two 

equalities of (25) we are showing that   (      ) can be safely evaluated from the film properties before 

any consideration of absorption, which we exploit in the Results section of the main paper.   

Consider a balance on the hypothetical number of photons in a differential volume of the solar 

cell,   ( ). With absorption as the only light-matter interaction we treat, the change in photons with time 

is due to absorption events  ( ) and any gradient in the flux, 

(26)  
   (     | )

  
      (     | )  ∑  (     | )

 

  
 

At steady state we conveniently lose our   ( ) dependence, 

(27)      (     | )   ∑  (     | )

 

   

We are now in a position to make two useful reductions. First, in the   and   axes where our film 

is infinite we will treat periodic solutions as trivial, making our boundary conditions in those dimensions 

(28)  

   
  

   

   
  

    

 

This simplifies our balance to 

(29)  
  (     | )

  
  ∑  (     | )

 

  
 

Second, neglecting Rayleigh scattering and photoluminescence the   dependence drops out. We 

can see this by considering the source of incident light, which below we will treat as a boundary condition. 

Being perpendicularly incident into the film, we have 

(30)    (  |   )    (   )   (    )   

Without fluorescence or Rayleigh scattering, our balance (Equation (27)) contains no transformations of  , 

and so the initial distribution   ( | )    ( )   (    ) is maintained.    then trivially integrates out of 

the balance; for the left hand side we have 



8 

 

(31)  
∫    (   | ) (    )    

  

 

    (   | )∫  (    )    

  

 

    (   | )  

 

and for the right hand side 

(32)  

 ∫ ∑  (     | )

 

   

  

 

  ∑   ⟨ ⟩  (   ̂     )

 

∫   (     | )   

  

 

  ∑   ⟨ ⟩  (   ̂     )

 

  (   | )∫  (    )    

  

 

  ∑   ⟨ ⟩  (   ̂     )

 

  (   | )

  ∑  (   | )

 

  

 

This simplifies our balance to 

(33)      (   | )   ∑  (   | )

 

   

Combining the two simplifications, our balance reduces to 

(34)  
   (   | )

  
  ∑  (   | )

 

  
 

With a transparent back electrode (at    ), the boundary condition can be defined as an 

incident unpolarized AM1.5 solar flux, 

(35)    (   |   )    (   )   

Note that ‘unpolarized’ is still constrained to be in the incident plane, giving us distributions 

(36)    (       )    ( )   (   
 

 
)  

 

  
    [    ] 

 

where   ( )  is the AM1.5 solar spectrum. We cannot treat reflection off the back electrode as an 

alternative boundary condition (  
 ( )   ), as omitting   prevents us from describing the incident flux 

with a generation term in the balance (34), such as 

(37)     (     )   (   )  

(38)    ( )    (  )   (    )   

Instead, we recognize that absorption events are independent, allowing us to treat the total light field as 

the sum of two other fields – one representing the ‘forward’ flux,   ( ), and one representing the ‘reverse’ 

flux,   ( ). Interference of incident and reflected light is constrained to a small band of frequencies 

around harmonics of the film thickness and we therefore neglect it. The fluxes have identical ODEs with 

opposite generation sign, 

(39)  
   (   | )

  
  ∑  (   | )

 

 
 

(40)  
   (   | )

  
 ∑  (   | )

 

  
 

but with different boundary conditions. In the forward direction we have the incident solar flux BC, and 

in the reverse we reflect the forward flux at    ,  

(41)    (   |    )      (   |   )   



9 

 

where   [   ]  is the reflectivity of the back electrode. Solving the forward and reverse ODEs in 

sequence, we get the total light field 

(42)    (   | )    (   | )    (   | )   

Integrating over (   ) yields the flux gradient   ( ) and the photon absorption rate  ( ). 

 We should also note that by neglecting   we also complicate treatment of cases where light is not 

incident along  , i.e. light incident at an angle. In that case we would need to treat not only the longer path 

length of light both on incidence and reflection, but also we would need to distinguish between the 

direction that the light gradient is formed along and the direction that excitons diffuse in in the next 

problem. The situation can be rectified by performing the entire light derivation above not along the 

dimension  , but along some propagation direction   with a z component of      . The entire derivation 

would be the same, except that the gradient in   and   must still be zero, so a 3D balance must be solved 

to enforce that and extract the gradient in  . 

 

 

Exciton Transport 

 

In SWNT, optical electronic excitations result in exciton generation – bound carrier states – rather 

than free charges, due to one dimensional confinement.
12, 19-21

 To collect charges in a solar cell, excitons 

must be dissociated either at a type II interface or by an electric field imparting coulomb force greater 

than the binding energy. Nonradiative decay of hot excitons to the band gap occurs on a timescale of 

 (     );
22, 23

 with a longitudinal diffusion coefficient    of  (         ) (see Results section of main 

paper), the hot exciton diffusion length is        and the exponential decay of excited-state energy 

brings it close to ground state within angstroms. Given that, additionally, the inter-SWNT transport 

occurs on a timescale of  (     ) ,
24

 we make the key assumption that for        , excitons 

nonradiatively relax to the band gap    of the relevant SWNT chirality instantly relative to any other 

processes we consider. This approximation allows us to neglect hot exciton behavior entirely, and treat 

the exciton generation rate at band gap energy    as the photon absorption rate for chirality  ,   ( ). We 

further assume that excitons do not interact with free charges, allowing us to couple the two systems only 

through exciton dissociation. While local dielectric environment – which impacts the exciton diffusion 

coefficient
25-27

 – can be inserted in our model as another random variable without changing the derivation 

that follows (see Including Dielectric Environment section below), we have chosen for simplicity to omit 

it; for a fairly homogenous dielectric environment, it could be rolled into    without much loss of 

accuracy. 

As we will show, a single empirical diffusion coefficient describing exciton transport in a film is 

limited to only one particular geometry and chemistry. Thus, an empirical approach alone would be 

misguided. Instead, we start with the single-SWNT 1D exciton reaction-diffusion behavior. We then 

derive the contribution of a network of such systems to three-dimensional exciton transport, and couple 

them via exciton hopping (EH). The goal is to extract the rate at which excitons arrive and dissociate at 

the electrodes at   {   }.The transport is thereby treated in a highly general manner, accommodating 

for arbitrary network density, co-alignment, net orientation, impurity types and concentrations, length 

distribution, bundle fraction and size, chirality mixture, and any other properties dependent on the random 

variables that we used to define the film. There are several ways to approach the coupling problem; the 

one adopted here was chosen for tractability and generality, but elegant alternatives are mentioned in the 

section Error! Reference source not found.. 

Beginning with a single nanotube of length  , there is a one dimensional coordinate 

(43)     [   ]         
  
 

 [   ]   

with an exciton concentration  (  ) excitons per length. Excitons are generated at a constant rate  (  ) 

that corresponds with an associated  (  ) in 3D space from the light absorption problem. In general the 

exciton concentration is also a function of time,  (    )  but we will be concerned only with steady state 

operation of the system. We take the excitons to be point particles, i.e. neglecting the finite electron-hole 
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correlation length. Intra-SWNT exciton transport is diffusive via elastic exciton-phonon scattering.
25, 28-30

 

This allows us to construct a 1D differential volume balance  

(44)  
  

  
  (  )    

   

   
   

 

where    is the theoretically- or empirically-evaluated longitudinal exciton diffusion coefficient in the 

dielectric environment of interest (and at the temperature of interest – we focus isothermal operation, see 

Relaxing Isothermal Approximation for how to introduce temperature dependency).
25

  

We can then introduce relevant relaxation mechanisms. Radiative (photoluminescent, PL) decay 

is first order with rate constant       ⁄ , where    is the PL time constant. Exciton quenching from 

impurities can either be localized via inter-band states allowing nonradiative relaxation (e.g. covalent sp
3
-

bonded
29, 31

 or ionically bonded
30, 32

 moieties) or delocalized due to doping.
29

 Terms should be included 

for each species of interest (e.g., oxidative agents, catalyst nanoparticles), with delocalized quenching 

exhibiting first-order kinetics and localized quenching for an impurity of type    with uniformly 

distributed concentration distribution     providing quenching rate 

(45)          (  )  

where     (in length
2
 time

-1
) is the associated ‘bimolecular’ rate constant. Note that     can be 

understood as the mean number of impurity contacts per length of SWNT; for example if each catalyst 

nanoparticle on average contacts 3 SWNT, then     would be three times the film’s particle density 

(number density) divided by the SWNT length density  ⟨ ⟩. Exciton-exciton annhiliation (EEA) via auger 

recombination is also possible at high fluences,
15, 33-35

 yielding the bimolecular reaction term 

(46)            

where      is the rate constant. Following 
35

 the EEA rate constant can be calculated as  

(47)          
   

   
(

 

  
) (

   

   
)
 

 
 

where     is the direct band gap energy,        (     ) is the exciton reduced mass where those 

masses are the effective masses,            ,     is the exciton binding energy,    is the free 

electron mass,     is the interband transition strength, and  

(48)      √
 (       )

 
  

 

     is approximately           for chiralities in the regime of              .
35

 Neglecting changes 

in the exciton coupling potential, we can scale this for different chiralities as 

(49)      (  )  (     
 

 
)(

      

  
)
 

(
      

       
)
 

  
 

For examinations of single SWNT PL intensities, end quenching is typically taken as a boundary 

condition.
36, 37

 Anticipating expansion to three dimensions however, instead we treat end quenching with 

another reaction term, 

(50)          ( (    )   (    ))  

where      is the end quenching rate constant (length
2
 time

-1
). Our 1D volume balance at steady state 

then becomes 

(51)  

  

  
  (  )    

   

   
             ∑       

  

      ( (    )   (    ))

    
 To determine the network behavior, we construct a three dimensional volume balance subject to 

diffusion in one dimensional channels. For clarity we will start with a single chirality in the film and omit 

index  , bringing in multichiral transport afterwards. We start, as we did in the light absorption case, by 

focusing on a nanotube population oriented in some direction  ̂, which will yield a set of differential 



11 

 

equations describing exciton transport; to include terms in those exciton balances for each possible 

orientation, we will find that we simply need to integrate the ODEs over the orientation distribution  ( ̂).  

For a hypothetical network where all nanotubes lie along the   axis, we have a one dimensional 

Fick’s law exciton flux in a given SWNT, from above, of 

(52)         

  

  
  

 

The resulting three-dimensional flux through the  -face (area      ) of a differential volume is the 

product of the one dimensional flux and the number of channels per area. The number of channels per 

area however is equivalent to the length of SWNT per volume,  ⟨ ⟩, providing a three dimensional flux of 

(53)         ⟨ ⟩      ⟨ ⟩  

  

  
    

  

  
 

 

where  (   ) is the exciton concentration per volume and we have exploited homogeneity in the frame of 

macroscopic diffusion for the relation 

(54)   ⟨ ⟩      

Note that while Equation (53) has the form of what one would empirically intuit, there is the crucial 

difference that    is exactly the single SWNT exciton diffusion coefficient, not a net film diffusivity; if 

we had only isolated (uncoupled) SWNT all lying in the   axis then the network diffusivity would be 

exactly   , as one would expect. For a network with orientation distribution  ( ̂), the diffusion coefficient 

for each dimension can be broken down by deconvoluting the contributions to the longitudinal diffusivity, 

(55)     
 

 
          

 

where     is the mean exciton velocity,      is the mean free path between elastic exciton-phonon 

interactions, and the ½ geometric factor reflects the single translation dimension. This relation allows us 

to infer orientation factors for the longitudinal diffusion coefficient in each dimension, 

(56)       
 

 
(        )    (        )     (        )    

 

(57)       
 

 
(        )    (        )     (        )    

 

(58)       
 

 
(    )    (    )     (    )     

 

Note that (   ) are random variables, not Cartesian coordinates, i.e.     (   )      . This yields a 

diffusion flux in three dimensions of 

(59)    (        ) 
  

  
    (        ) 

  

  
   (    ) 

  

  
 

 

Note that diffusion in Equation (59) is only due to longitudinal intra-SWNT transport, we have not yet 

accounted for exciton hopping (EH) between nanotubes.  

Next we extract film quenching kinetics. Radiative decay, being monoexcitonic, remains simply 

linear in concentration and independent of geometry, 

(60)         

Impurity/defect scattering is similar; multiplying by  ⟨ ⟩ to convert the reaction rate per length of SWNT 

to rate per volume network 

(61)    ⟨ ⟩                     

Treating EEA in the same manner we are left with a lingering   factor remedied by an identity: 

(62)    ⟨ ⟩                   
 ⟨ ⟩

 ⟨ ⟩
          

    

 ⟨ ⟩
    

 

Note that we therefore predict an inverse scaling of EEA rate with carbon density, an observation that can 

be experimentally evaluated. Again note that     and      are the single SWNT 1D rate constants, not 

empirical film constants, rewarding our microscopic derivation. 
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Note that in general the quenching rates can be made chirality dependent if desired, just sum and 

attenuate by chiral fraction, as we did with the absorption cross-section  (  ) in the light absorption 

problem, e.g.,  

(63)        ∑       

 

  

 

 Finally we can consider quenching due to the ends of nanotubes. In three dimensions in our 

homogenous picture an exciton at position   could be on any SWNT of length  , and, constrained by the 

distribution  (  | ), could be at any relative distance to the end. As a result, we can treat the SWNT ends 

as impurities with some concentration,     ( ) , that is in general non-uniform. For example in a 

vertically aligned film with one layer of SWNT, there will be more SWNT ends near the two electrodes 

than in the center of the film (Figure 2b). This can be thought of as the ability to, constrained by  (  | ), 
slide SWNT around any point  , bringing the end of the SWNT closer or farther away. This observation 

gives us a rate of end quenching 

(64)   
    

 ⟨ ⟩
    ( )     

 

where again      is the one dimensional rate constant. The distribution of end locations     ,     ( )  
 (    | )  can either be constructed independently from the film geometry or calculated from the 

dependency on  (  | ) and  ( ) via their relation, 

(65)  

        
 

 
  

  (    |    )   (        
 

 
 )   (        

 

 
 ) 

    ( )   (    | )  ∫ ∫  (    |    )(   ) 
(   ) 
(    )

  
  (  | ) ( )       

 

 

 
Figure 2. (a) cartoon of nanotubes penetrating the x-face of a differential volume balance. (b) an example cartoon of a vertical 

SWNT forest demonstrating construction of the SWNT end distribution. (c) illustration of diffusivity perpendicular to 

longitudinal axis at SWNT intersections and bundles. (d) illustration of tunneling process parameters. 
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 Finally, we consider exciton transport between nanotubes. The mechanisms of exciton 

transfer/hopping (EH) between nanotubes of the same and different chirality, as well as the mechanisms 

of type II exciton dissociation at donor-acceptor interfaces, remain under investigation and debate.
3, 4, 38, 39

 

Explicitly, in the model we treat EH as a tunneling process in bundles and at interconnects, neglecting 

admittedly vital phenomena such as exciton delocalization
39, 40

 and Schottky barriers/band bending.
41

 

What is important for the future use and evolution of this framework however is that the relevant 

independent parameters are available, allowing a different functional form to be introduced without 

contradicting the remainder of the model. This consideration highlights the extensibility of our method 

beyond our explicit form. 

 We assume that on our timescale of interest ( (    )) after a transition to a neighboring SWNT 

an exciton does not maintain momentum in the direction of the transition, yielding random walk character. 

The result of EH events is therefore a diffusive flux of excitons at inter-SWNT contacts perpendicular to 

the longitudinal axes (the normal between tubes), a crucial phenomenon for aligned films.
3
 For a pair of 

points (  
    

 ) on two SWNT of orientations  ̂   ̂  with separation (Figure 2d) 

(66)    |  
    

 |      

Fermi’s golden rule provides a quadratic dependence of the single exciton elastic transition rate     on 

the interaction potential between excitons at the two points,    (   ̂   ̂ ): 

(67)      |   (   ̂   ̂ )|
 
   

For a tunneling process we anticipate exponential decay of rate with separation 
39

 

(68)  |   (   ̂   ̂ )|
 

       
 

where   (length
-1

) is the spatial decay constant for the equivalent monoexponential decay of the exciton 

wave function radially away from the SWNT, e.g.,
2
 | 

  
|
 

       . The relative alignment of the two 

SWNT should linearly attenuate the interaction potential by momentum conservation,  

(69)      | ̂   ̂ |
 
   

Given the exponential decay of the transition rate and the strong van der Waals attraction between SWNT, 

we approximate that EH occurs only at intimate SWNT contacts with some fixed    . This 

approximation allows us to define a fixed proportionality constant     such that 

(70)    | ̂   ̂ |  

(71)              

    can be determined experimentally or from theoretical evaluation. 

 From the transition rate at contacts we can derive the resulting diffusion coefficients. In the 1D 

axis along the transition direction (perpendicular to both SWNT longitudinal axes  ̂   ̂ , i.e.  ̂   ̂ ) the 

diffusivity can be expressed as a product of the velocity and mean free path as in Equation (55). Since 

each transition covers the effective distance      and are independent events, the effective velocity is 

   (    ) and mean free path is     , giving us 

(72)      
 

 
    (    )  (    )  

 

 
     (    )

 
  

 

The network diffusion resulting from this transport at contacts is intimately dependent on the microscopic 

heterogeneity of the film; both the co-alignment and contact density (correlated position) distributions, 

rather than mean values, determine the resulting film EH diffusivity. For example, a film comprised 

entirely of bundles – which have large contact areas and near-perfect alignment – will exhibit enhanced 

EH diffusion relative to an isotropic film. As another example, recalling the Breakdown of Macroscopic 

                                                      
2

 For a square tunneling barrier between SWNT this is rigorous, but in practice even with no interstitial 

contaminants the image potential in each SWNT gives curvature to the tunneling barrier. The wavefunction decay 

therefore won’t be exactly monoexponential, but will always be rapid. 
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Homogeneity section, a network with larger voids (at the same total density) will exhibit more efficient 

EH transport due to higher correlation of positions (and therefore a higher density of contacts). 

We divide the film into two distinct microscopic environments: bundles and interconnects. The 

bundling coefficient,   , we define as the length fraction of SWNT in bundles. Along with the mean 

number of SWNT in a bundle,   , we can determine the diffusivity due to bundling (again, neglecting 

exciton delocalization
39

). In a close-packed bundle, a single SWNT can be surrounded by anywhere from 

1 to 6 neighbors, and each neighbor of the same chirality provides the pairwise diffusion pathway 

described in (72). For   nearest neighbors around each SWNT, and     in bundles, the diffusivity in 

the plane perpendicular to the bundle would be 

(73)         
 

 
     (     )

   
 

If we define    as the probability of a member of the bundle having   neighbors, then we can determine   

as 

(74)    ∑    

 

   

  
 

We can calculate the mean value of   from only the average bundle size. As         , giving us a 

functional form (with constants   and  )  

(75)   (  )  
    

   

  
   

 

At a minimum bundle size of 2 we must have    , giving us 

(76)   ( )             

From the series of maximal  (  ) we can evaluate   as ~0.51, 

(77)   (  )  
    

            

  
      

 

With diffusivity       (Equation (73)) in the plane perpendicular to a bundle, we have the resulting 

exciton flux in Cartesian coordinates 

(78)  
  (          )      

  

  
   (          )      

  

  

   (      )      

  

  
 

 

 Outside of bundles, exciton transport between nanotubes is still expected at interconnects 

between SWNT. The resulting flux will in general be lower than bundled SWNT EH due to 1) imperfect 

alignment (   ) and 2) lower overlap lengths (in bundles the entire length of the SWNT overlap, 

giving    ⟨ ⟩ length of SWNT in bundles per volume, whereas at interconnects only a small region of 

length     is contacted between SWNT. 

 An ideal treatment of the number of SWNT contacts per volume would include the correlation of 

nanotube locations, for example by deriving it from the nanotube radial distribution function (See section 

Breakdown of Macroscopic Homogeneity below). As discussed in that section however, a good first 

approximation is to assume an independent dispersion (i.e. uniform distribution). We can determine the 

density of interconnects by considering a control volume surrounding a nanotube of length   (Figure 3). 

 
Figure 3. Cartoon of a control volume around an unbundled nanotube. 
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 The number of other SWNT with central axes in the volume up to    away is the number of 

interconnects in the control volume (whether the locations are correlated or not, see Breakdown of 

Macroscopic Homogeneity). In other words, the number of contacts is the number of other nanotubes 

within one diameter of the control nanotube. To roughly approximate the bending ability of the nanotubes 

(deviation from rigid rods) the contact distance can be extended to twice the mean displacement       

(79)              

for example an additional    . The volume excluding the central nanotube is then 

(80)   ( (   )
   (

  

 
)
 

)   
  

 
   

   
 

In that volume there are, based on the number of SWNT per volume  , 

(81)  (    (  
 

  
))    

  

 
   

  
 

other SWNT present, accounting for SWNT pulled into bundles.
3
 This yields the number of intersections 

per length of the control nanotube, 

(82)  

   
 

 
 (    (  

 

  
))    

  

 
   

 

 (    (  
 

  
))  

  

 
   

   

 

Multiplying by the length of SWNT not in bundles per volume we have 

(83)  

(    (  
 

  
))  ⟨ ⟩  (    (  

 

  
)) 

  

 
   

 

  ⟨ ⟩ (    (  
 

  
))

 
  

 
   

  

 

intersections per volume of solar cell. If each intersection to provides     of contact length along the 

SWNT, the length of intersections per volume is 

(84)   ⟨ ⟩ (    (  
 

  
))

 
  

 
   

   
 

 For each intersection, we have the diffusivity expression (72), 

(85)        
 

 
     (    )

 
  

 

providing a flux in the dimension along the intersection  ̂   ̂  

(86)         ̂   ̂  
      

  

  
  

 

Multiplying by the number of intersections in a cross-sectional area we arrive at the film fluxes arising 

from interconnects, 

(87)          (          )   (    (  
 

  
))

 
  

 
   

       

  

  
 

 

(88)          (          )   (    (  
 

  
))

 
  

 
   

       

  

  
 

 

(89)          (      )   (    (  
 

  
))

 
  

 
   

       

  

  
 

 

where the leading trigonometric terms are again projections onto the plane perpendicular to the control 

nanotube longitudinal axis, and we employed relation (54). To account for significant reductions in inter-

                                                      
3
 i.e. each bundle itself can behave as a nanotube, providing the (  

 

  
) coefficient. 
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SWNT contacts arising from nanotube coatings (e.g., polymer, surfactant), an interstitial modifier    can 

be included to attenuate the number of interconnects with the proportional factor     , 

(90)  

        (    )  (          )   (    (  
 

  
))

 
  

 
   

       

  

  
 

        (    )  (          )   (    (  
 

  
))

 
  

 
   

       

  

  
 

        (    )  (      )   (    (  
 

  
))

 
  

 
   

       

  

  
  

 

This adjustment is not necessary in bundles, as the definition of the bundle coefficient explicitly rejects 

lengths of SWNT that are not in intimate contact. 

 The final consideration in exciton diffusion at contacts is the co-alignment ( ) dependence. Since 

no other term in our balance will depend on the relative orientation, 

(91)    | ̂   ̂  |   (             )   

integrating over  ( ) yields 

(92)        
 

 
   (    )

 
 ⟨  ⟩  

 

⟨  ⟩ is readily calculable given the distribution of  ( ̂). For example two methods would be: 

1) Integrate    over the distribution of angles directly 

(93)  ⟨  ⟩  ∫∫∫∫   (  ) (   ) (  ) (   )               
 

2) Evaluate the product distribution 

(94)   ( |             )   (  | ̂   ̂  |)  

(95)  

| ̂   ̂  |    
    

     
    

     
    

  

 |                      

                                   | 

 

(96)  

 ( )

 ∫ ∫ ∫ ∫  ( |             ) (  ) (   ) (  ) (   )              

 

 

 

 

  

 

  

 

  

 

The expected value is then 

(97)  ⟨  ⟩  ∫    ( )  
 

 

  
 

Including all three diffusion mechanisms, the volume balance for exciton transport in a 

monochiral network is  

(98)          (    (  
 

  
))

 
  

 
   

  (    (  
 

  
))      
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(99)  

  

  
  ( )  (  (        ) 

 (          ) ((    )               ))
   

   

 (  (        ) 

 (          ) ((    )               ))
   

   

 (  (    )  (      ) ((    )               ))
   

   

      ∑      

  

 
    

 ⟨ ⟩
   

    

 ⟨ ⟩
    ( )     

We can recognize    as representing the ‘sparsity’ influence on orthogonal diffusivity, with      for a 

fully-bundled film (independent of density). Analogously to the light field balance, we can recognize that 

periodic results in   and   are trivial, simplifying the balance to the   coordinate, 

(100)  
  

  
 

  

  
   

 

(101)  

  

  
  ( )  ((    )    (      ) ((    )               ))

   

   

      ∑      

  

 
    

 ⟨ ⟩
   

    

 ⟨ ⟩
    ( )     

 

The balance is subject to steady state conditions and electrode boundary conditions, treated below. For 

simplicity we can now define a total network diffusion coefficient,  

(102)       (    )    (      ) ((    )               )  
 

Analogous to the light absorption problem, we have constructed a differential equation describing exciton 

transport due to nanotubes with orientation  ̂, but to get the total balance we must sum contributions from 

all possible orientations. Again, that weighted sum is equivalent to integrating (102) over the distribution 

 ( ̂). This treatment is only valid under our approximation of a homogenous film. That is our method: 

treat single-SWNT chemical and geometric parameters as random variables, derive network 

behavior from single-SWNT physics as a function of those parameters, and finally integrate the 

solution over the distribution of those parameters. In the Results section we illustrate this process 

when we apply it to specific cases. 

This is an important result; equation (101) has the intuitive reaction-diffusion form one might guess 

for an empirical fit of a given experimental solar cell, but  

A) the net diffusivity      and several of the kinetic rate constants depend exquisitely on the film 

properties (  ( ̂)  ⟨ ⟩  ( ) ), preventing broader applicability of any single diffusivity 

measurement, and 

B) by considering the distributions of single-SWNT parameters and the microscopic mechanisms of 

exciton transport and decay, we have been able to derive the dependence of network diffusion and 

reaction constants on film properties and fundamental single-exciton physical constants. 

Furthermore, this framework built on treating single-SWNT parameters as random variables and defining 

the network through their distributions is flexible and adaptive; particular terms – such as exciton hopping 

diffusivities – can be changed as SWNT exciton physics is better understood. New parameters with 

associated distributions can be introduced, such as dielectric constant and local density (radial distribution 

function), and variable independence assumptions can be relaxed, increasing complexity and nuance 

without grossly deteriorating numerical solvency. 

 Multiple chiralities can now be introduced. Separate balances can be constructed for excitons 

residing on each chirality,   ( )  coupled by inter-SWNT interactions (exciton hopping, limited by band 
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gap alignment rules). In applying the model we make the simplifying assumptions of homogenous 

chirality distributions (    independent of  ), and chirality-independent length and orientation 

distributions; all of those assumptions can be relaxed without invalidating the remaining derivation. The 

total concentration of excitons is thus 

(103)          

(104)   ( )  ∑   ( )

  {  }

  ( ) ∑   

  {  }

  ( )   

Beginning with quenching due to metallic nanotubes (mSWNT), we denote    as the mSWNT 

fraction. Since nonradiative quenching on mSWNT is rapid compared to residence times, we do not need 

to construct a concentration balance for them, and the impact of EH to mSWNT is an exciton loss term 

for all other chiralities. Along the length of an unbundled SWNT every contact with mSWNT quenches 

excitons at rate 

(105)     ⟨  ⟩      

The length of intersection per length SWNT is the intersections per length times the length of each 

intersection, 

(106)            

where      is the number of intersections with a metal SWNT per length SWNT, which is related to our 

earlier quantity    number of intersections total per length SWNT (Equation (82)) via 

(107)              (    (  
 

  
))  

  

 
   

   
 

Multiplying the rate per intersection times the length of intersection per length SWNT gives the total 

quenching rate for a single-nanotube 1D system 

(108)      ⟨  ⟩               

We extend to the film quenching rate by multiplying by the length of unbundled mSWNT per cell volume,  

(109)  

 (    (  
 

  
))  ⟨ ⟩     ⟨  ⟩            

  (    (  
 

  
))     ⟨  ⟩            

     ⟨  ⟩        

 

where in the final equality we substitute in definition (98). 

 Note that    varies by chirality, making the relevant control volume chirality-dependent; properly, 

the coupling term for EH to/from chirality   at interconnects in the balance of excitons on chirality   

should have in Equation (80)    (         ) in the first term      in the second term, i.e. 

(110)   ( (                )
 
  (

    

 
)
 

)  
 

For practical purposes however when diameters are similar the effect is small compared to      . 

To treat mSWNT quenching in bundles, consider the number of mSWNT per cross-sectional area 

of a bundle, 

(111)     
 

√ 
  

    
 

By definition of the diffusion coefficient, excitons in a cross-section cover       area per time, yielding 

an exciton quenching rate (mean rate of arrival to a mSWNT) of 

(112)            
 

√ 
  

     
 

per length of SWNT. Multiplying by the length of SWNT in bundles per volume yields the film 

quenching rate due to mSWNT in bundles 

(113)      ⟨ ⟩         

 

√ 
  

                

 

√ 
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 We can now construct exciton concentration balances for each chirality,   ( ). In addition to all 

of the monochiral balance (101) and mSWNT quenching terms ((109) and (113)), the balances for each 

chirality are coupled to one another through EH interactions in bundles and interconnects. Recall that we 

have chosen indices such that band gap (        ) and index are monotonically increasing (       ). 

Because transitions are elastic, exciton transitions from higher bandgaps to lower bandgaps occur at rates 

analogous to mSWNT quenching; transitions ‘up’ bandgaps may be thermally activated for small band 

gaps, in which case they are attenuated by an Aarhenius factor, 

(114)              
 

     

     
 

In the balance for chirality  , we have exciton loss due to unbundled coupling,
 4
 

(115)  

   ∑(    (  
 

  
))    ⟨  ⟩          

   

    ∑   ⟨  ⟩       

   

  

 

exciton gain due to unbundled coupling, 

(116)  

 ∑(    (  
 

  
))   ⟨  ⟩             

   

  ∑   ⟨  ⟩         
   

  

 

exciton loss due to bundled coupling, 

(117)     ∑          

 

√ 
  

   

   

  
 

and exciton gain due to bundled coupling, 

(118)   ∑          

 

√ 
  

   

   

    
 

Note again that we are neglecting band bending and Schottky barriers at the interfaces of SWNT, which 

may play a significant role in transition rates;
4, 41

 as understanding of such phenomena is reached, the 

coupling expressions (115)-(118) can be changed appropriately. 

 The final expression for multichiral network exciton transport is then the system of ordinary 

differential equations 

                                                      
4
 For clarity of presentation and because the effects can be small, I have not included the thermally excited transition 

terms. They are identical to the terms presented, but with the opposite sum inequality and an Aarhenius prefactor in 

line with (114). For example, in Equation (145) the term would be 

   ∑ 
 

     

    (    (  
 

  

))    ⟨  ⟩          
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(119)  

   

  
    ( )      

    

   
        ∑      

  

 
    

 ⟨ ⟩
  
 

 
    

 ⟨ ⟩
    ( )        ⟨  ⟩        

          

 

√ 
  

     

   ∑(   ⟨  ⟩                 

 

√ 
  

  ) 

   

 ∑   (   ⟨  ⟩                 

 

√ 
  

  ) 

   

 

 

for each chirality  .  
The system of ODEs (119) can be solved at steady state subject to boundary conditions at the 

electrodes (     ). A variety of electrode configurations can be considered (Figure 1c); in proceeding 

we focus on two electrodes that can drive type II exciton dissociation – one hole accepting and one 

electron accepting. For each electrode we therefore have Robin boundary conditions from the exciton 

splitting rate, 

(120)  
   

  
|
   

 
     

    
  (   ) 

 

(121)  
   

  
|
   

  
     

    
  (   )  

 

where       and       are the dissociation rate constants that in general could depend on the chirality  . In 

applying the model in this work we approximate perfect collection efficiency, i.e.          ,   (  
   )   , and check convergence to a finite value of        (     ). 

 

 

Charge Transport 

 Free carrier transport in the nanotube network is in many ways more challenging than exciton 

diffusion. In addition to the analogous geometric effects on film charge mobility and diffusivity, charge 

transfer at the interface of nanotubes, particularly of different chiralities, can block or trap charges.
41

 

Asymmetric electron and hole generation (at the two electrodes) and slow mobilities can lead to an 

electric field development that feeds back on the exciton dissociation problem, inhibiting dissociation 

and/or driving spontaneous in-film dissociation when the field strength exceeds the binding energy. 

Finally carrier densities can significantly impact mobility.
42

  

In this work we do not seek to accurately describe free carrier transport in the SWNT film. Rather, we 

proceed under the large simplification that performance will be limited by exciton diffusion, due to high 

longitudinal mobilities in any intrinsic electric field.
42

 This assumption reduces coupling between the free 

carrier and exciton problems to the exciton dissociation rate. We also continue to neglect any charge-

transfer effects at inter-SWNT contacts, as those effects have been neither theoretically nor 

experimentally defined. These rough assumptions allow, as we show, important results in the 

optimization of film performance, but prohibit accurate quantitative prediction of external quantum 

efficiency (EQE). In future work, we will develop a more complete consideration of free carrier transport.   

A variety of electrode materials and configurations are possible (Figure 1c), the choice of which 

impacts charge carrier transport profoundly, just as in any excitonic photovoltaic system. In this work we 

focus on an illustrative case of one electron-collecting and one hole-collecting electrode, arbitrarily 

choosing     to be electron-collecting (Figure 4). 
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Figure 4. cartoon of the free carrier generation and translation process at the electron-collecting electrode, where band alignment 

is chosen such that  holes are blocked and electron relaxation in the electrode conduction band compensates for the binding 

energy of the nanotube. Intrinsic work function differences between the two electrodes inspire a potential drop of      . 

 We estimate the geometric impact on valence and conduction band carrier mobilities in the film 

from the exciton behavior. We attenuate single-SWNT electron and hole mobilities,   
  and   

 , by the 

network attenuation of single-SWNT exciton diffusivities, 

(122)       
 

  

    
   

 
   

 

    

  
 

 

(123)       
 

  

    
   

 
   

 

    

  
 

 

where we have applied the Einstein relation at low bias,   is the elementary charge,    is Boltzmann’s 

constant, and (here only)   is the isothermal film temperature. Reversing the Einstein relation we extract 

the film mobilities, 

(124)     
 

   
   

 

(125)     
 

   
     

 We now balance the non-equilibrium populations of conduction band carriers,   ( ), and valence 

band carriers,   ( ), which are coupled to one another and the electric field   ( ). We again identify that 

in any practical case 

(126)  
   
  

 
   
  

 
   
  

 
   
  

   
 

and our problem is confined to the   axis. For each carrier there are drift and diffusion fluxes, 

(127)    
    

    

   
  

 
 

(128)    
     

           

(129)    
    

    

   
  

 
 

(130)    
     

           

The fluxes contribute to a population balance on a differential volume as 

(131)  
   
  

  
   

   

  
 

   
     

  
   

    
  

   (  

   
  

   
   

  
) 

 

(132)  
   
  

  
   

   

  
 

   
     

  
   

    
  

   (  

   
  

   
   

  
)  

 

Interacting excess charges also threaten recombination, coupling the differential equations, 

(133)              
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 Equations (131) and (132) have boundary conditions defined at the electrodes. At the hole 

collecting electrode     electrons are generated in the film with no possibility of collection, coupling to 

the exciton dissociation rate, 

(134)  (   
    

   
     

)|
   

 ∑        (   )

 

   

At     the equivalent process occurs for holes, 

(135)  (   
    

   
     

)|
   

  ∑        (   )

 

   

At the opposite boundary, carrier collection can be represented by a Robin boundary condition, 

(136)  (   
    

   
     

)|
   

        (   )  

(137)  (   
    

   
     

)|
   

         (   )   

For perfect collection efficiency we have       , which we can take as arbitrarily high and check that 

      (     ) converges. 

 The electric field evolves in the   axis from the gradient in excess charge populations, 

(138)  
   

  
 

 

 
(  ( )    ( ))  

 

where   is the permittivity of the film. The intrinsic bias across the film from mismatched electrode work 

functions, 

(139)    (   )         

(140)              

forms the boundary condition to (138), where    and    are the work functions of materails at     and 

  respectively. 

 Coupled to (138),  the balances (131) and (132) can be solved numerically at steady state, subject 

to boundary conditions (134)-(137) and (139). From the resulting carrier fluxes at     and     we 

have the short circuit current and EQE. 

  

 

Breakdown of Macroscopic Homogeneity 

 

 In our evaluation of the absorption cross-section in the light absorption problem and exciton 

hopping at nanotube contacts in the exciton transport problem we adopted an assumption of homogeneity 

at a macroscopic scale (on the order of the exciton longitudinal diffusion length). In certain reasonable 

film morphologies, however, there are significant variations in film density at the micron scale, even for 

unbundled SWNT. For example, in vacuum filtration or spin-coat deposition (Figure 5a), large voids are 

present. Essentially, the distribution  (  ) is not uniform even at the macroscopic scale. The result of 

deviations from uniformity is that a mean film density,  ⟨ ⟩, is lower than the local density around a given 

nanotube,  ⟨ ⟩
   . Viewed another way, the position of a given nanotube is not independent of the position 

of other nanotubes, but rather is correlated – a nanotube is more likely to be in some proximity to another 

nanotube than would be the case if their locations were independent (Figure 5b). Ideally, we would 

consider a radial distribution function in the plane perpendicular to the SWNT longitudinal axis, 

describing the probability density of another tube being at a given separation. 

 Above the percolation threshold density (65% close-packed density for an aligned film), the 

morphology of the film does not matter as conduction paths are relatively constant. This has been 

experimentally verified by Maillaud et al.
1
 Below the percolation threshold, morphology plays a 

substantial role in film conductivity.
1
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Figure 5. a) SEM image of spin-coated film of SWNT deposited from a sodium-dodecyl-sulfate solution. b) cartoon illustrating 

the impact of heterogeneity; a given/control nanotube (green) is not equally likely to be anywhere, but rather more likely to be 

close to other nanotubes. 

 In the light absorption problem, the effect of the error is to overestimate absorption when using a 

uniform  ⟨ ⟩; the correlation between SWNT reduces the light available at higher   in regions where 

SWNT is present, and no absorption occurs in voids. In the exciton transport problem, the effect of the 

error is to underestimate interconnect diffusivity, as the number of SWNT contacts is in reality higher. 

One solution to that problem is to use a SWNT-SWNT radial distribution function,  ( ), instead of a 

mean value of the number density,  , where   is the distance away from a SWNT central axis and  ( ) is 

the probability density that another SWNT is present at that separation. The number of contacts would 

then be integrated over the desired distance, rather than a fixed value, 

(141)  ∫
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 Fortunately, even qualitative consideration suggests that situations where this effect becomes 

substantial are also situations of least interest for investigation. First, high density films, within an order 

of magnitude of  ⟨ ⟩
  , where this effect is minimal or nonexistent, are the films of interest for performance 

maximization; as we show, and has been experimentally indicated,
3
 and is easy to intuit, higher density 

films yield higher EQE. Second, as we move towards aligned films where bundling is endemic, the 

exciton hopping impact of heterogeneity is mitigated. 

 We can also quantitatively consider the magnitude and conditions of this error. In terms of scaling, 

the number of interconnects increases linearly with density, and  ⟨ ⟩   ⟨ ⟩
     ⟨ ⟩

  . Unless the void 

fraction is greater than 99%, in which case the film performance will be weak anyway, the number 

interconnects will be less than two orders of magnitude smaller than reality. While that seems like a large 

change, comparison of the diffusivities estimated puts that into perspective 

(142)  

       (          ) 

       (         ) 
    (        )  

 

Unless the density itself is high – in which case the void fraction is reduced – the diffusivity at 

interconnects plays a small role compared to any other available exciton diffusion pathway, even if 

bundling fractions are below 1%. In other words, the higher the void fraction, the less important SWNT 

interconnects become to exciton diffusion. 

 To relax our uniformity assumption, either simple approximations or rigorous measurement could 

be employed. In the former case, SEM and AFM images could be used to estimate the excess void 

volume in the film, and the density could be corrected where appropriate. For example, for a 30% void 

volume, 

(143)   ⟨ ⟩
         ⟨ ⟩  
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More rigorously, X-Ray Diffraction (XRD) could be performed on the film to get the carbon-carbon 

radial distribution function. To extract the SWNT-SWNT radial distribution function from this, the intra-

SWNT XRD spectrum must be either simulated or measured, and then subtracted from the film spectrum. 

This process is challenging and complicated. 

 

Anisotropy of Number Density 

 

  , the mean number of SWNT per volume, we employ as a defining parameter for the film. In 

experimental application of the present work, it is only necessary in determining  ⟨ ⟩, and other empirical 

quantities could be measured and used. In adjustments to this derivation, however, care should be taken if 

using   in any microscopic and some macroscopic scenarios for non-isotropic films. The quantity is 

calculated based on the total number of SWNT in the total volume. As the volume is reduced it may not 

scale appropriately. In a truly isotropic film,   can accurately describe the number of SWNT in a given 

volume all the way down to the point where microscopic heterogeneity arises ( (     ) scale). In an 

aligned film however, the situation depends on how the volume is shaped. Imagine a sandwiched forest of 

vertical SWNT.   is the number of SWNT divided by the total volume. If we bisect the forest vertically 

and consider half the volume, reducing the number of SWNT by half and the volume by half, our number 

density holds (Figure below). If we instead bisect it horizontally however,  we cut the volume in half, but 

the total number of SWNT in each half hasn’t changed, and our number density is grossly inaccurate. In 

treating SWNT interconnects we are saved because by definition the SWNT are not aligned in this case – 

they are essentially isotropic – and the bundled SWNT scenario relies not on   but rather  ⟨ ⟩, which 

always scales appropriately with volume. Note that  ⟨ ⟩ always scales appropriately with volume. 

  

 
 

 

Consideration of Rayleigh Scattering and Photoluminescence 

 

 In the derivation above we opted to treat absorption as the only light-matter interaction 

mechanism of concern, neglecting Rayleigh scattering of light within the film and reemission from 

radiative decay of excitons (photoluminescence, PL). Making those assumptions has clear benefits for 

tractability and computation. Omitting reflection allowed us to remove   from our calculations, and 

omitting PL greatly simplified coupling to the exciton transport equations. The error introduced by 

neglecting these phenomena bears consideration however. 

Fluorescence requires that an exciton radiatively decay before being quenched or diffusing to the 

electrodes. To achieve the latter in substantial quantities case the film must be thick, with   on the order 

of the radiative diffusion length, (see Results section for parameter estimates) 

(144)     √     √                             

As we see in the Results section, thicknesses on the order of a micron are rarely interesting. Furthermore, 

in the scenario when thickness is high, readsorption of the emitted light would be likely, making the net 

effect a dislocation of the exciton; an important phenomenon to be sure, but a second order one. To 

achieve a case where radiative decay could lead to a net loss of excitons, i.e. emitted light escaping, the 
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film would have to be thin, in which case radiative decay would be slower than separation at the 

electrodes. Arguments for neglecting Rayleigh scattering are similar, the losses and gains of light are, by 

virtue of the scattering cross-section, a higher-order consideration. 

To increase the nuance and complexity of the model, fluorescence and internal reflection could 

still be included. In Rayleigh scattering, the photon balance (Equation (27)) should include a term 

transforming   appropriately. To treat the fluorescent case we would include the term 

    ( )   (        )   (   ̂) 

where  ( ) is excitons/volume solar cell and         is the radiative decay rate of excitons, and       

is the band gap energy of chirality  . This term would couple the light absorption problem to the exciton 

concentration problem; given the small relative impact of fluorescence, a self-consistent method may be 

most efficient: 

1. Solve the light absorption and exciton diffusion problems without including PL contributions to 

the light field. 

2. Take the resulting  ( ), use it as an input (  ( )( )) into solving the light field problem with the 

fixed term  

     ( )( )   (        ) (   ̂)  
then solve the exciton concentration problem again. 

3. Take that output, call it  ( )( ), and again plug it into the problem in the same manner. 

4. Repeat the process until convergence ( ( )( )   (   )( )). 

 

Relaxing Isothermal Approximation 

 

To relax the isothermal approximation and introduce temperature dependency to desired properties, a 

parallel set of ODEs solving the heat transfer problem must be coupled to our light absorption problem by 

the heat generated through nonradiaitve decay at the point of exciton generation, e.g., 

(145)   (  )   (    )   (  )  ∫  (    )  (     )   

 

 

 

 

where   is the rate of heat generation. 

 

Including dielectric environment 

 

The local dielectric environment has been shown to influence the size and diffusion coefficient of 

excitons.
11, 12

 That behavior is intuitive, as it is the poor dielectric screening in two of three dimensions in 

a nanorod like SWNT that gives rise to the strong exciton binding energies.
12, 19-21

 The impact on 

efficiency would be the same as adding impurities and end quenching (see Results) – it would perturb the 

balance between light absorption and diffusion, shifting the optimal thickness proportionally to the 

diffusion coefficient. Changing the dielectric would also change the absorption cross-section.
43

 The 

present model can be made to explicitly include the local dielectric constant  . The distribution,  ( ), 

would be an additional defining property of the network, just like  ( ) or {  }.  ( ) would include for 

example surfactant coverage, interstitial polymer coverage, and bundling (     ). Relevant physical 

constants should then be made dependent on  , for example      ( ). 

 

 

Estimating Physical Constants 

 

Incident Light Flux 

 We take the intensity and frequency distribution of incident light to be the AM1.5 solar spectrum. 

Even in numerical evaluation of the model, a continuous form of the spectrum is desirable for 

interpolation of experimental data and fine discretization of the spectrum. The spectrum can be fit to 
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better than 99% rms error by subtracting a series of Gaussian profiles from a geometrically attenuated 

blackbody spectrum. The blackbody spectrum attenuated by the atmosphere at an angle of 0.26° to the 

sun (angle of earth to sun) is
44

 

(146)    ( )  
   

    (
  

        
) 

 

in units photons per area-time per energy photon, where                is a geometric factor,   is 

Planck’s constant,   is the speed of light in a vacuum,    is 5960K (temperature of the surface of the sun), 

   is boltzmann’s constant, and   is the energy of the light. To get the flux distributed in wavelength we 

convert 

(147)    (      )  
 

 
     ( )  

 

From the spectrum we subtract a series of Gaussian functions to fit the AM1.5 spectrum, e.g. for 60 

Guassians we have 

(148)    ( )  
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Figure 6. photon flux and irradiance distributions in wavelength for AM1.5 light, showing the experimental data (blue), 5960K 

blackbody spectrum attenuated by the earth-sun ray (red), and the same with 40 Gaussian curves subtracted to fit the data. 

 
Gaussian mean 
(nm) 

100 205.3 298.7 374.02 513.62 603.05 706.77 941.36 945.56 1052.6 

Gaussian stdev 
(nm) 

20 27.144 23.678 58.316 51.216 34.191 126.1 31.948 11.867 31.996 

Gaussian 
maximum (W/m

2
) 
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(nm) 

Gaussian stdev 
(nm) 

20.299 23.864 24.212 43.435 56.254 23.855 72.786 33.832 46.216 9.2091 

Gaussian 
maximum (W/m

2
) 

0.46103 0.091044 -0.18011 0.3014 0.23276 -0.07346 -0.01938 0.1312 0.12825 0.071032 

           Gaussian mean 
(nm) 

2061 2194.6 2299 2394.2 2505.2 2600.2 2700.3 2800.1 2898.3 2999.3 

Gaussian stdev 
(nm) 

12.398 20.316 34.468 43.054 44.269 49.389 49.978 49.997 49.196 46.776 

Gaussian 
maximum (W/m

2
) 

0.03767 0.003692 0.006103 0.021186 0.042016 0.036476 0.031019 0.027264 0.023936 0.017587 

           Gaussian mean 
(nm) 

3100.1 3215 3305.8 3399 3500.9 3594.2 3696.5 3798.4 3899.2 3998.4 

Gaussian stdev 
(nm) 

46.272 31.193 42.886 39.739 34.614 32.971 30.404 27.578 30.045 23.088 

Gaussian 
maximum (W/m

2
) 

0.020271 0.017782 0.015205 0.007778 0.004147 0.004858 0.0039 0.003244 0.004091 0.002809 

Table 1. results of Guassian fit to the AM1.5 spectrum (Figure 6), where for each curve the mean, variance, and amplitude of the 

curve were adjusted. 

 

(6,5) Absorption Cross-section 

On resonance with the     transition the parallel polarized absorption cross-section of a single 

(6,5) SWNT has been measured as           cm
2
 per carbon atom.

16
 With                 carbon 

atoms per length,
16

 the absorption cross-section at     per length of nanotube is 

(149)         (   )               
  

 
  

 

The wavelength dependence of        ( ) in general will depend on the environmental conditions, e.g., 

surfactant type, polymer, solid film or solution phase.
2
 We estimate the dependency for a surfactant-free 

solid-state SWNT film by normalizing the absorbance spectrum of an isotropic film, from 
2
. We scale that 

dependency by the     peak, at 582 nm in our data (Figure 8). Analogously to the incident solar flux, for 

a continuous expression we fit the data with a series of Lorentzian curves (Figure 8, Table 2) 

(150)         ( )  ∑
  

(    )
     

 

  

   

  
 

 
Figure 7. absorbance of isotropic film of (6,5) SWNT, from 2. 
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Figure 8. absorption cross-section of (6,5) SWNT as a function of wavelength, estimated from the absorbance spectrum of an 

isotropic surfactant-free film. For a continuous expression, data has been fit with a series of Lorentzian curves. 

 

Mean,        
Amplitude,    

(    ) 

232.83 103.61 5000.00 

242.77 19.452 22.27 

308.35 12.665 7.31 

278.12 27.524 69.72 

352.19 13.986 18.31 

489.88 89.528 408.84 

524.62 21.783 17.31 

579.12 22.764 42.15 

594.89 35.838 127.10 

676.72 54.687 130.03 

788.72 200 3085.30 

867.95 24.518 8.67 

894.02 58.505 228.62 

1005.6 32.675 86.77 

1029.9 43.087 417.75 

1064.2 60.168 631.40 

1178.9 34.132 20.28 

1216.2 57.532 62.27 

1338.6 117.2 590.47 

1397.7 22.647 3.18 
Table 2. Fit parameter values for Lorentzian series fit  of the absorption cross-section spectrum. 

 While the frequency dependence of   ( ) and   ( ) will be different due to different optical 

transition modes, no polarization-dependent absorption data is available for (6,5) SWNT. We therefore 

crudely approximate as the same frequency dependence, and introduce the depolarization effect by an 

expected 1:5 net ratio of perpendicular:parallel absorbance,
45
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(151)    ( )  
 

 
       ( ) 

 

(152)    ( )  
 

 
       ( )  

 

 
Figure 9. (6,5) isotropic absorption cross-section overlaid over solar spectrum. 

Other Constants 

The diameter of (6,5) SWNT is               ,
46

 yielding an approximate             

(see derivation above). We vary film density to investigate its influence, but benchmark values to the 

maximum density of a SWNT film – the close-packed density (see section below),  ⟨ ⟩
        

          Current fabrication methods exhibit varying densities, but at present many are far short of 

close-packed; vertical forests are <0.1%  ⟨ ⟩
  ,

47
 and isotropic films are typically lower,

2
 although 

horizontally aligned films have been produced up to 35% of CP density by some methods.
48, 49

 

Measured values for longitudinal diffusion coefficients in SWNT span three orders of magnitude, 

ranging from 0.1-0.4 cm
2
/s

28, 50
 and 7.5-10.7 cm

2
/s

36, 51
 to 150-350 cm

2
/s

25, 52
. Comparison of the 

environments of those measurements, along with comparison of other environmentally sensitive 

investigations,
15, 26, 27, 36, 53

 strongly suggests that this variation is due to influence of the local environment 

on exciton-phonon scattering. Under this hypothesis, lower diffusivity values (and associated diffusion 

lengths) have been observed in surfactant-wrapped SWNT in solution phase, while SWNT in air exhibit 

the higher diffusivity values. For a solid-state film therefore we estimate             . 

 For radiative decay we take a time constant of           ,
27, 36

 yielding               . 

For impurity quenching, a variety of potential impurity types could be present in a film depending on the 

SWNT growth, separation, purification, and deposition methods; common possibilities would include 

lingering metal catalyst particles, sonication- or oxidation-induced sp
3
 functionalization of nanotube 

sidewalls (lattice defect formation), and adsorbed oxygen.
30

 We define some generic impurity that 

introduces inter-bandgap electronic states with a time constant consistent with nonradiative relaxation, 

 (      ). From that we estimate the rate constant as 

(153)      √
  

    
 √

        

           
          

 

 
 

 

and take a representative population of two generic impurities per micron of SWNT length,       
        (which we vary to examine the impact of below). 

 The exciton-exciton annihilation rate constant we arrive at from 
35

 (see derivation above), with 

    (   )           and     (   )          , 
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)(

      

  
)
 

(
      

       
)
 

      
 

 
  

 

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

wavelength (nm)

to
ta

l 
ir
ra

d
ia

n
c
e

, 
W

/m
2
 p

e
r 

n
m

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6
x 10

-10


l m

2
/m



30 

 

End quenching we treat analogously to impurity quenching as the decay pathway is similar, giving 

                          . Finally we estimate the exciton hopping rate constant from 
3, 24

 as 

                     . 

 For free carrier physical constants, we estimate a single-SWNT free carrier mobility from 
42, 54, 55

 

in the                   regime, taking   
    

                 ; under the Einstein 

relation (see SI) the resulting diffusivities at 300K are   
    

          . The electron-hole scattering 

length of            
55

 then allows us to estimate the recombination rate constant, 

(155)      
   
 

  
               

 

(156)          
 √

  
    

 

    
                 

 

Finally we estimate the relative film permittivity as that of SWNT, ~5. 

 

Close-packed density 

 

The unit-cell area of hexagonally-packed SWNT, including interstitial space, is that of a rhombus with 

interior angle     (Figure 10), 

(157)                 
 

 
   

 

 
 

√ 

 
    

   
 

 
Figure 10. Cartoon of cross-section of SWNT bundle demonstrating the single-SWNT unit cell area. 

 

This makes the length density in a bundle 

(158)   ⟨ ⟩
   

 

√     
 

                
 

 

 

 

Single-layer and multi-layer aligned films 

 As mentioned in the main text, two deposition paradigms are possible for fabrication of an 

aligned film. The aligned film can be grown or stacked in a single ‘forest’ or ‘layer’, which we call a 

single-layer (SL) film (Figure 11a). A SL film limits the possible thickness of the film, as 

(159)    ⟨ ⟩         

It is also possible to contact a film without end-alignment, such as in a horizontally aligned film. This is 

the multi-layer (ML) case (Figure 11b). 
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Figure 11. SL and ML film comparison. a) cartoon of a SL film, with both ends immersed in electrodes. b) cartoon of a ML film, 

with electrodes adhered onto a larger cake. c) allowed thickess of SL and ML films. d) comparison of quenching rates for 

horizontally aligned (red,         , 80% close-packed density) and vertically aligned (blue,       ), 0.3% close-packed 

density. End quenching is not zero in the vertically aligned (SL) case because the thickness is on the order of ⟨ ⟩. Squares are 

spatially-averaged means, triangles are minima and maxima values. 

 

A SL film will always outperform a ML film all else being equal, due to lower end quenching. In 

practice, SL film electrodes are likely to encompass the ends of the SWNT in the SL film, leading to 

(160)      
        ( )          

where the approximation is unless the film thickness is within a standard deviation of the average SWNT 

length ⟨ ⟩ (we find, however, that in optimization such thicknesses are rarely desirable). In contrast, in a 

ML film the end distribution is homogenous, 

(161)            

In the cases we examine, rather than choose between the two morphologies we often allow for 

both – i.e. if the film thickness is low enough for a SL film to be permissible, we use a SL film, while if it 

falls above that we use a ML film. In practice however the optimal film thicknesses never, except in the 

case of very low density or very low angle (e.g., horizontally aligned film), approach the limit (159). 

 

Light absorption of aligned films 

 A more gradual application of the light absorption problem to aligned films is presented here, 

building on the Results section in the main paper. 

Beginning our calculation with the irradiance, the absorption cross-section polarization 

dependence is described as equation (16) for our single chirality. We are in a position now to consider the 

dot product, 

(162)  
   ̂     ̂     ̂     ̂ 

                                      
            

 

Integrating the light field balance over  ( ̂), we have from Equation (25) 
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(163)  
  (   )  ∫ ∫   (   ̂  )   ( ) ( )    

 

 

  

 

  

 

Subject to our distributions, 

(164)   ( )   (    )    [  
 

 
]   

(165)   ( )   (   )   

equation (163) becomes a sifting integral yielding      and    . Our absorption cross-section 

becomes,  

(166)  
  (   )         ( ) (
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Solving the photon balance (34) with no   dependence to  ⟨ ⟩ or   , subject to the incident 

unpolarized solar flux boundary condition (36), our forward flux becomes 

(167)  

  (   | )    ( )   (   
 

 
)  

 

  

    [  ⟨ ⟩       ( ) (
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Integrating over    is trivial with the sifting property of  ( ), yielding 

(168)  
  (    | )  

 

  
  ( )

    [  ⟨ ⟩       ( ) (
 

 
(          )  

 

 
(  |          |) )  ]  

Note that except in the vertically-aligned case (    ), there is a polarization dependence to the field 

absorption. We can integrate over all frequencies to get the flux gradient at each polarization, or integrate 

over all polarization angles to get the flux gradient at each frequency. 

With a boundary condition of reflectance   off the back electrode we solve the reverse flux 

differential equation, again substituting in   (   ) and integrating over    to yield 

(169)  

  (    | )  
 

  
     ( )

    [  ⟨ ⟩       ( ) (
 

 
(          )  

 

 
(  |          |) )

 (    )]  

The total light field gradient would then be 

(170)    (    | )    (    | )    (    | )   

for example plotted in Figure 3 of the main paper for horizontally and vertically aligned films. 

 

 

Supplemental information for aligned film results 

 In addition to the results presented in the main text, a variety of other figures are relevant. In 

Figure 12 we can look at the exciton concentration in the horizontally and vertically aligned films 

presented in the main paper, noting the low (<10 nm) diffusion length of the horizontally-aligned film. 

We can also look at the relative rates of each quenching mechanism considered, observing that exciton-

exciton auger annihilation plays a minor role in device performance. 
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Figure 12 Comparison of exciton transport behavior in vertically (green) and horizontally (blue) aligned films at        , 

 ⟨ ⟩      ⟨ ⟩
  ,    . a) exciton concentration at depth   in the film. Note the short (<10 nm) diffusion length of excitons in the 

horizontally-aligned film, leading to poor collection even at high concentrations. b) mean (squares) and minimum/maximum 

(triangles) quenching rates for each mechanism of interest. Note log scale. 

We can observe a few interesting features of varying the mean length of nanotubes in the network. 

By condensing the 2D maps in the main paper in 1D plots of efficiency versus thickness at varying 

density, we can easily visualize the shift in optimal thicknesss    as density rises (Figure 13). 
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Figure 13. Performance versus thickness curves with increasing density for vertically and horizontally aligned films. These plots 

are the same data as the 2D maps presented in the main paper, but visualized as a series of 1D curves. Black arrow indicates the 

direction of increasing density (red to blue to purple). In the vertically aligned case the shift of the optimal thickness downward is 

clear, particularly the asymptote to      as    . 

 

In Figure 14 we look at the trend of EQE with ⟨ ⟩ for vertically and horizontally aligned films, 

and different thicknesses and densities. In all cases we find that performance monotonically increases 

with nanotube length, as we would intuit given that end-quenching is a purely undesirably phenomenon, 

but that there are diminishing returns with increasing length – again as we would intuit – leading to an 

asymptote as ⟨ ⟩   , where performance is limited by the balance of light absorption and the thickness 

of the film.  

 

 
Figure 14. Trends of performance with mean length for vertically (a) and horizontally (b) aligned films. Top charts compare 

trends at different thicknesses and 0.9 CP density. Bottom charts compare trends at different densities and 100 nm thickness. 
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Figure 15. Exciton concentration gradients in vertically (a) and horizontally (b) aligned films with different mean lengths and 

30% CP density. 

 

 We noted in the main paper the compelling match of a power law trend to the optimal thickness 

versus density. For vertically aligned films, we can plot more curves and extract trends of the coefficients 

to validate the results against more data. Numerical results exhibit noise because of low sensitivity 

( (     )) of EQE to thickness close to the optimum. 

 
Figure 16. Trend of optimal thickness    with density at different mean lengths ⟨ ⟩. Open circles are numerical optimization 

results, and curves are power law fits     (
 

   
)
 

  . 

Table 3. Power and biexponential fits of trends in optimal thickness with density, at different mean lengths. Note that error in the 

power law trend is entirely within optimization limits, which are   (  )   . Trends in power law       parameters are in the 

SI. 

Power law description of optimal thickness trend 

 
Power Fit (    (

 

   
)
 

  ) 
Biexponential Fit 

Nanotube 

Length ⟨ ⟩ 
a (nm) 

b (
 

   
)
  

 
c (nm) R

2

 rms 

error 

(nm) 

R
2

 rms error 

(nm) 

10 nm 56 -0.172 -42.6 0.992 1.5 
  

20 nm 68 -0.187 -50 0.996 1.5 
  

50 nm 101 -0.189 -75 0.999 1.0 0.992 3.1 

100 nm 148 -0.186 -113 0.992 4.2 
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400 nm 230 -0.205 -174 0.998 3.6 0.990 8.6 

800 nm 254 -0.229 -176 0.997 6.5 0.987 13.2 

1000 nm 248 -0.246 -166 0.995 9.0 
  

1200 nm 245 -0.255 -155 0.997 6.8 0.989 13.7 

 

 

 
Figure 17. Trends of power law coefficients,      , with mean length ⟨ ⟩. While the linear fit of the power coefficient (b) is 

compelling, logarithmic and quadratic fits for the proportionality factor ( ) and intercept ( ) are not entirely convincing. We find 

that the relationship of a and c however does follow a power trend, see main paper. See main paper for data table. 

 

 In the main paper, a trend of    
  with ⟨ ⟩ is observed, reproduced here in Figure 18. We can 

evaluate the quality of the trend rigorously to conclude that it is a perfect fit: the slope 95% confidence 

interval, 0.0212, is 1/100
th
 of the equivalent error in    

  resulting from numerical optimization methods. 
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Figure 18. (copied from main text) Trend of optimal thickness numerical results with density, plotted relative to optimal thickness 

at close-packed density (see text). The data (black circles) includes results from devices with 
⟨ ⟩                                 and         , showing that on this plot they all collapse to a single trend. The blue 

curve is a fit of equation (39) in the main paper, showing perfect agreement (well within numerical result variation). The inset 

show the trend of the optimal thickness at close-packed density (   
 ) with mean nanotube length (inverse impurity concentration) 

on a log-log scale, showing that they exhibt a strict power law relationship. 

 

We also can for interest take cross-sections of the orientation-thickness maps along a thickness, 

200 nm, at different densities to see the emergence of an intermediate angle. 
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Figure 19. absorbance and efficiency curves with alignment angle for devices 200 nm thick. ⟨ ⟩                       
 . 

 

Isotropic Case 

 

The second case we consider is an isotropic film, where SWNT orientation in any axis is equally 

likely, 

(171)  
 ( )  
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This system differs from current ‘isotropic’ experimental systems in that those systems in practice restrict 

 , making them more of a ‘sandwich’ architecture and more similar to off-horizontal aligned films. Even 

when caste with surfactant we expect some level of bundling to be typical in an isotropic network, and 

take a baseline for comparison of       ,     . 

 Our treatment of the light field is analogous to the aligned case application, but the integral over 

 ( ̂) becomes less trivial, 
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(25) is solvent, and yields (see section below, moved for brevity) 
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Note that we no longer have any    dependence to absorption, as we would intuit from an isotropic 

distribution. Our light field becomes 
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Figure 20. Light field attenuation and steady-state exciton transport for an isotropic monochiral (6,5) film with         , 

   ,  ⟨ ⟩      ⟨ ⟩
  ,       , and     . a) irradiance gradient as a function of wavelength. Note stronger attenuation on 

resonance. b) total film absorbance as a function of wavelength. c) total irradiance as a function of depth in the field. d) mean 

quenching rates by each mechanism. Note log scale. e) exciton concentration gradient. f) exciton flux through the depth of the 

film. 

 Moving on to the exciton concentration gradient, our expressions are the same as in the aligned 

film case, with the end concentration being        . Integrating the monochiral exciton balance (101) 

over orientation distribution  ( ) we get the diffusion coefficient, 

(177)  
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which resolves to 
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  ,      ,      , and    follow as their definitions, with the mean squared coalignment becoming (see 

Derivation) 
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 Beyond examining particular cases (Figure 20), we can proceed to explore the parameter space, 

particularly the thickness-density relation (Figure 21). Again we see a strong optimum    emerge as a 

function of density. As density rises, the enhanced absorbance makes lower thicknesses with shorter 

generated exciton-electrode separations preferable. Again we see a large improvement in performance 

with density at low density; higher density improves absorbance, increases inter-SWNT hopping, and 

reduces (at fixed concentration) exciton-exciton annihilation and end-quenching. In general we note 

similar performance trends compared to aligned films with modest vertical components. 
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Figure 21. Density-thickness optimization of isotropic films, with           , and     . a) performance for ‘idealized’ film. 

b) fraction of light absorbed. c) performance for film with ⟨ ⟩        , 2 impurities per micron. d) performance versus T plots 

at each density sampled in (a) and (c), the arrow indicates path of    in (c). 

 

Isotropic absorption cross-section 

 

 For brevity, resolution of the integral 
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is omitted from the section above; we pursue it here. First, we recognize that when we integrate over    

the incident light  ( ) function will sift to    
 

 
, simplifying 
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Next, we note the identity 
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Applying this our integral simplifies to 
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which further simplifies with 
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giving us 
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We then approach the absolute value integral.      is always positive over the domain, allowing us to 

easily evaluate the inner integral, 
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Fortuitously, the remaining integral splits over four domains with definite sign regardless of the value of 

  ,  
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Our expression is then resolved, 
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Table of Variables 

 

In order of introduction. 

      Cartesian coordinates. The   axis is perpendicular to the plane heterojunction.     

is in the top of the film. 

   Incident solar flux, AM1.5 light. Unpolarized in the    plane, incident in   . 

  SWNT film thickness. 

  Back electrode reflectance. 

  Length of a single nanotube 

 ̂  (   ) Orientation, in spherical coordinates, of a single nanotube. 

  (     ) Length and orientation vector of a nanotube (the vector along its central axis). 

   Vector to/position of the center of a single nanotube in the film. 

   Vector to/position of particular points along the central axis of a nanotube in the film, 

in Cartesian dimensions. 

   Fraction along the length of the nanotube describing a position along the tube. 

   One-dimensional coordinate along the length of a nanotube. 

   Chirality of a nanotube, (     ), indexed arbitrarily by integer    , defining 

       . 

       Center-to-center diameter of a nanotube of chirality  , i.e. from the center of one wall 

to the center of the other. 

   Effective outer diameter of a carbon nanotube of chirality  . 

   Graphene lattice constant 

   Fraction of chirality   represented in the film, by number density. 

  ( ) Total photon flux at position  , across all wavelengths, polarizations, and propagation 

directions. 

  Frequency. 

  (     ) Linear polarization angle of irradiance, in spherical coordinates. 

  (     ) Propagation direction of irradiance, in spherical coordinates. 

 (     ̂  ) Absorption cross-section of a nanotube per atom or mole of carbon. 
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  (   ) 
  (   ) 

Parallel (longitudinal) and perpendicular (axial) transition dipoles of a carbon 

nanotube, representing optically-active electronic transitions between electronic states 

with periodicity in those orientations. 

  (     ̂  ) Absorption cross-section of a carbon nanotube per length of carbon nanotube. 

              Empirically-measured absorption cross-sections of carbon nanotubes per length of 

carbon nanotube. 

  Number density of carbon nanotubes in the network (number of nanotubes per 

volume). See SI section for discussion of spatial variation. 

 ⟨ ⟩ Length of carbon nanotubes per volume of film. See SI section for heterogeneity 

issues. 

  ( ) Photon absorption rate due to chirality  . 
 ( ) Photon absorption rate. 

  ( ) Photon ‘concentration’ at position  . 

  Time 

      Forward and reverse photon fluxes. 

   Diffusion coefficient in one dimension along a nanotube, i.e. the longitudinal 

diffusion coefficient. 

   First optical (exciton) band gap of chirality   (see text). It is the single-photon active 

transition (ground state  1u), alternatively labeled      , or     when ignoring the 

chiral index. 

    Frequency of light resonant with ground state to 1u electron transition, i.e.     
     . 

     Ground state electron energy, in chirality  . 

 (  ) One-dimensional exciton concentration along the length of a nanotube. 

 ( ) Exciton concentration at position  . 

        Radiative decay constant and radiative decay constant. 

    Quenching rate constant from local impurities. 

    Concentration of local impurities along carbon nanotubes. 

     Exciton-exciton auger recombination rate constant. 

      Exciton binding energy for chirality  . 

     End-quenching rate constant. 

    ( ) Concentration of nanotube ends. 

        Separation between center of two nantoubes, at interconnects (I) and bundles (B). 

    Exciton hopping rate between nanotubes. 

  Co-alignment of two nanotubes. 

                Orthogonal (inter-SWNT) diffusion coeffient, at bundles and interconnects. 

  Number of nearest neighbors around a nanotube in a bundle. 

   Mean bundle size (in number of nanotubes) 

   Fraction of bundles in the film, in length of nanotubes in bundles per total length of 

nanotubes. 

   Defined constant that could be understood as the ‘sparsity’. 

   Interstitial modifier – the fraction of the surface of nanotubes that are covered in a 

material such that they block inter-SWNT contacts. 

     Total film diffusion coefficient in the   axis. 

   Fraction of mSWNT in the film 

      Electron and hole free carrier diffusion coefficients. 

      Electron and hole free carrier mobilities. 

   Boltzmann constant 

  Elementary charge 

      Free carrier concentrations 
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      Free carrier fluxes 

     Electron-hole recombination rate constant 

   Electric field 

  Mean dialectric constant of film 

    Intrinsic bias across the film due to work function offset. 
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