ESI 1 Chemical and mineralogical properties of the soils prior to the γ -irradiation and the growth experiment.

ESI 2 Mean concentrations of water-soluble major elements (standard deviation in parentheses) in soils A and F before and after the growth experiment for the intact (IN) and sterilized-reinoculated (SR) materials, of the bulk (Bk) and the rhizosphere (Rz) components. The Wilcoxon test indicates the significance of the differences between the Bk and the Rz soils for a given soil and treatment (ns and * represent a p > 0.10 and $p \le 0.10$ respectively).

ESI 3 Mean concentrations of water-soluble Al, Cu and Zn species (standard deviation in parentheses) in soils A and F before and after the growth experiment for the intact (IN) and sterilized-reinoculated (SR) materials of the bulk (Bk) and the rhizosphere (Rz) components. The Wilcoxon test indicates the significance of the differences between the Bk and the Rz soils for a given soil and treatment (ns and * represent a p > 0.10 and $p \le 0.10$ respectively).

ESI 4 Mean concentrations of water-soluble trace elements (standard deviation in parentheses) in soils A and F before and after the growth experiment for the intact (IN) and sterilized-reinoculated (SR) materials, of the bulk (Bk) and the rhizosphere (Rz) components. The Wilcoxon test indicates the significance of the differences between the Bk and the Rz soils for a given soil and treatment (ns and * represent a p > 0.10 and $p \le 0.10$ respectively).

ESI 5 Mean concentration of NH4-EDTA soluble trace elements (standard deviation in parentheses) in soils A and F for the intact (IN) and sterilized-reinoculated (SR) materials, of the bulk (Bk) and the rhizosphere (Rz) components. The Wilcoxon test indicates the significance of the differences between the Bk and the Rz soils for a given soil and treatment (ns and * represent a p > 0.10 and $p \le 0.10$ respectively).

				Pyı	ro ^d	0x	a ^d	$\mathbf{DC}^{\mathbf{d}}$			Mineralo	gy of the clay	fraction	≤2 μm [€]		
	CEC ^a	\mathbf{BS}^{b}	Zn _{ex} /CEC ^c	Fe	ЧI	Fe	W	Fe	Qtz	Chl	Chl- Vermi	K-Feld	Plag	Mica	Amphi	Vermi
Soil	cmol(+)/kg	%	%	I		g/kg		1				-relative abu	ndance ^f -			
A	4.3	53	23	2.6	2.4	6.9	4.6	9.8	4	б	б	7	7	-	1	ł
Ч	17.9	92	L	4.6	2.1	4.6	2.2	16.7	4	ω	б	2	7	1	1	-
^a CEC = b BS = b	cation-exchanase saturation	nge capa	city as the sur	n of Ba	Cl ₂ -exc	hangeat	ole catic	su su								nis journar
^d Pyro =	EC = exchang sodium pyrol	ceable zu ohosphat	nc saturation c e; Oxa = acid	compute	ed as ex-	changea alate; D	C = dit	(Zn _{ex}) dı nionite-c	vided by itrate ex	y CEC tractions		, ,				IS © The

^e Qtz = quartz; Chl = chlorite; Chl-Vermi = chlorite-vermiculite interstratified; K-Feld = K-feldspath; Plag = plagioclase;

Amphi = amphibole; Vermi = vermiculite; f = dominant; 3 = major; 2 = minor and 1 = trace

ESI 1

	A Befi			1		1	;	D		Ţ	1		с <u>о</u> г.	†)))
$ \begin{array}{l l l l l l l l l l l l l l l l l l l $	A Befe St				µS/cm	Мц	1					-µmol/kg	soil				1
	S	ore growth	h experiment														
Sterlined 1 (4) (10) (2) (2) (3) (St	Initial		-	LL	6.2	866	148	252	2677	807	274	220	446	120	79	532
Sterilized 1 85 156 2160 274 195 485 943 157 402 298 50 38 393 After growth experiment (8) (1.2) (72) (29) (7) (41) (31)	St				(4)	(0.4)	(105)	(5)	(10)	(297)	(20)	(9)	(10)	(24)	(]	(4)	(28)
		terilized		-	85	15.6	2160	274	195	485	943	157	402	298	50	38	547
					(8)	(1.2)	(72)	(29)	6	(42)	(73)	(4)	(51)	(22)	(1)	(1)	(69)
	Afte	er growth .	experiment														
		Z	Bk	4	90ns	12ns	2071ns	248ns	185ns	163ns	848ns	102ns	7367ns	248ns	8234ns	259ns	9093ns
					(10)	(2)	(200)	(34)	(24)	(24)	(41)	(23)	(1287)	(12)	(1880)	(3)	(1166)
			Rz	ŝ	107	13	2203	315 2	368	259	1360	142	8354	137	9265	652	7835
					(2)	(])	(174)	(-)	(9)	(11)	(26)	(3)	(41)	(15)	(92)	(50)	(178)
		SR	Bk	4	132ns	15ns	2839ns	354ns	235ns	287ns	1266ns	100 ns	10407 ns	222ns	11439ns	745ns	7892ns
					(12)	(1)	(156)	(24)	(26)	(41)	(145)	(11)	(06L)	(13)	(945)	(465)	(334)
			Rz	m	147	18	3318	408	326	305	1188	207	12043	139	12545	197	9190
					(1)	(0.2)	(318)	(15)	(5)	(4)	(8)	(4)	(06)	(5)	(110)	(89)	(1472)
	F Befi	ore growth	h experiment			.							000		1		
Sterilized (1) (0.1) (108) (13) (5) (28) (3) (8) (21) (7) (6) (52) After growth experiment (3) (0.2) (179) (88) (10) (41) (16) (19) (84) (6) (7) (6) (52) Mfer growth experiment (12) (0.1) (73) (181) (14) (54) (29) (88) (7) (6) (7) (6) (7) (6) (7) (8) (7) <t< th=""><th></th><th>Initial</th><th></th><th>_</th><th>102</th><th>1.1</th><th>2809</th><th>821</th><th>368</th><th>2245</th><th>987</th><th>216</th><th>603</th><th>273</th><th>157</th><th>117</th><th>924</th></t<>		Initial		_	102	1.1	2809	821	368	2245	987	216	603	273	157	117	924
Sterilized 1 117 2.1 1679 1729 271 50 1144 154 6.22 204 114 104 957 After growth experiment (3) (0.2) (179) (88) (10) (41) (16) (19) (84) (6) (8) (7) (86) After growth experiment (12) (0.1) (73) (181) (14) (54) (6) (8) (7) (86) Rz 4 168 1.0 (73) (181) (14) (54) (50) (1204) (1602) (286) (244) (7) (86) (740) (1400) (286) (1490) (70) (80) (1490) (710) (80) (1490) (710) (80) (1400) (710) (80) (710) (80) (710) (80) (710) (80) (710) (78) (710) (78) (740) (740) (740) (740) (740) (740) (740) <					(1)	(0.1)	(108)	(13)	(5)	(28)	(3)	(8)	(21)	(-)	6	(9)	(52)
After growth experiment (3) (0.2) (179) (88) (10) (41) (16) (19) (84) (0) (8) (7) (86) IN Bit 4 98* 1.8* 818* 1197* 78* 101ns 860* 64* 6130* 627* 102855ns 4056* 24429* Rz 4 103 (123) (131) (141) (54) (29) (38) (1204) (1602) 2366 24429* Rz 4 168 1.0 (131) (77) (65) (1660) (244) (149) (710) (73) (149) SR Bit 4 147* 2.1* 1214ns 1876* 111* 130* 859* 81ns 11004ns 595* 12267ns 1493ns 24462* Rz 4 147* 2.1* 1214ns 1876* 111* 130* 859* 81ns 11004ns 595* 12267ns 1493ns 2	St	terilized		-	117	2.1	1679	1729	271	50	1144	154	622	204	114	104	957
After growth experiment IN Bk 4 98* 1.8* 818* 1197* 78* 101ns 860* 64* 6130* 627* 10285ns 4056* 24429* Rz 4 168 1.0 122.6 2422 772 71 272 138 10090 1886 12040 (1602) (286) Rz 4 168 1.0 122.6 2422 772 71 272 138 10090 1886 12209 2049 27480 Rz 4 147* 2.1* 1214ns 1876* 111* 130* 859* 81ns 11004ns 595* 12267ns 1493ns 27462* Rz 4 172 1.5 1270 2486 648 146 72 51 10064 2582 14457 1548 34282 99 (0.1) (50) (164) (101) (20) (27) (33) (938)					(3)	(0.2)	(179)	(88)	(10)	(41)	(16)	(19)	(84)	(9)	(8)	()	(86)
	Afte	er growth .	experiment														
		Z	Bk	4	98*	1.8^{*}	818*	1197*	78*	101 ns	860*	64*	6130^{*}	627*	10285ns	4056*	24429*
			ſ	-	(12)	(0.1)	(73)	(181)	(14)	(54) 31	(29)	(38)	(934)	(99)	(1204)	(1602)	(286)
			KZ	4	108	1.0	1770	7777	711	/1	717	138	06001	1880	60771	2049	2/480
					(19)	(0.2)	(103)	(267)	(108)	(23)	(77)	(65)	(1660)	(244)	(2317)	(643)	(1490)
		SR	Bk	4	147*	2.1*	1214ns	1876^{*}	111^{*}	130*	859*	81ns	11004ns	595*	12267ns	1493ns	24462*
					(12)	(0.2)	(80)	(199)	(20)	(24)	(50)	(6)	(1130)	(78)	(1245)	(510)	(515)
			Rz	4	172	1.5	1270	2486	648	146	72	51	10064	2582	11457	1248	34282
dim^d 1.0 0.01 10 5 10 10 10 10 10 10 10 10 15 25 20					(6)	(0.1)	(50)	(164)	(101)	(20)	(27)	(33)	(938)	(296)	(1216)	(355)	(2188)
	dlm	p			1.0	0.01	10	5	10	10	10	10	10	10	15	25	20

⁶ For n = 1, the standard deviations are estimated from analytical replication ⁶EC = electrical conductivity; Tot N = total soluble nitrogen; DON = dissolved organic nitrogen; DOC = dissolved organic carbon ^d dlm = detection limit of the method

Supplementary Material (ESI) for Journal of Environmental Monitoring This journal is © The Royal Society of Chemistry 2011

Soil	Treatment ^a	Component	n ^b	Al .	Al tm ^c	Al om ^c	Al im ^c umol/k	Cu g soil	Cu ²⁺	Zn	ZnL°
A	Before growt Initial Sterilized	h experiment		186 (6.2)				1.25 (0.03) 0.94 (0.16)		38.6 (0.8) 75 9 (10 1)	
	nazili jang		1	(7.06) 007		1	1	(01.0) +6.0	1	(1.01) 6.61	
	After growth IN	<i>experiment</i> Bk	4	152 ns	92.8 ns	35.3 ns	57.5 ns	0.65 ns	0.45 ns	106 ns	92 ns
		Rz	ę	(3.2) 119	(6.0) 109.5	(0.2) 35.6	(6.3) 73.6	(0.03) 0.47	(0.03) 0.31	(10.3) 127	(8.2) 99
				(8.3)	(0.9)	(0.1)	(2.5)	(0.01)	(0.03)	(3.3)	(3.2)
	SR	Bk	4	170 ns	126.7 ns	35.2 ns	91.5 ns	0.51 ns	0.36 ns	160 ns	130 ns
			6	(11.0)	(11.3)	(1.3) 25 6	(11.9)	(0.02) 0.40	(0.03)	(16.1)	(11.6)
		2	n	(1.9)	(1.4) (1.4)	0.00 (1.8)	(3.0)	0.40 (0.01)	0.44 (0.02)	(3.2)	(4.4)
Т	Before growt. Initial	h experiment		154 (3 8)	ł	1	1	00 00 01)		169 (3 8)	
	Sterilized			189 (6.5)				1.85(0.03)		313 (28.6)	
	After growth	experiment		:	:			÷	•		
	Z	Bk	4	118 *	38.5 * (0.8)	30.2 *	8.4 ns	1.22 *	0.11 *	202 ns	137 ns
		Rz	4	(1.6) 70	(0.0) 32.2	(4.0) 24.3	(+-1) 7.9	(0.0 1) 1.31	(20-0) 0.07	190	122
				(8.1)	(4.6)	(2.5)	(2.4)	(0.06)	(0.01)	(38.8)	(32.2)
	SR	Bk	4	100 *	36.9 *	29.0 *	* 6.7	1.13 *	0.07 ns	223 *	161 *
				(6.7)	(0.9)	(2.3)	(1.7)	(0.02)	(0.02)	(11.5)	(5.4)
		Rz	4	92	47.8	35.7	12.2	1.42	0.08	256 (11.0)	176
				(1.9)	(6.1)	(3.1)	(3.1)	(0.02)	(0.01)	(11.0)	(12.0)
dlm ^d				0.12	0.01	0.01	0.01	0.02	0.03	0.03	0.02
^a Initia	l = initial soil; S	Sterilized = 100%	sterilized s	oil; IN = intact	non sterilize	d soil; SR = st	erilized-reinc	culated soil			
D D D ***	- 1 the stands	ad doubtions and	f potomitor	loss and and	and in the section.						

^b For n = 1, the standard deviations are estimated from analytical replication ^cAl tm, Al om, Al im: total monomeric, organic and inorganic monomeric aluminum; ZnL : labile Zn ^d dlm = detection limit of the method

Soil	Treatment ^a	Component	u ^p	\mathbf{As}		Cd		Ce		Cr	lico	Fe		Pb		IT	
<	Rafora arout	h avnarimant								-hIIIU/ K	-1105						
	Initial		-	0.135		0.12		0.114		0.23		24.8		0.038		0.002	
			•	(0.001)		(0.01)		(0.004)		(0.01)		(4.3)		(0.022)		(0.002)	
	Sterilized		-	0.100		0.28		0.107		0.25		21.9		0.078		0.003	
				(0.009)		(0.04)		(0.019)		(0.04)		(2.7)		(0.012)		(0.002)	
	After growth	experiment	-														
	ľ	Bk	4	660.0	ns	0.2.7	ns	0.072	ns	0.16	ns	18.7	us	0.028	ns	0.0026	ns
		¢	Ċ	(0.004)		(0.04) 0.20		(0.002)		(0.02)		(1.8) (2.1)		(0.004) 0.022		(/.000.0)	
		Kz	n	0.0/6		05.0 (0.01)		0.003) (0.003)		(0.01)		10.3 (0.2)		0.033 (0.001)		0.0032 (0.0002)	
	SR	Bk	4	0.092	su	0.43	su	0.069	su	0.13	su	16.7	su	0.028	su	0.0033	su
				(0.006)		(0.04)		(0.003)		(0.01)		(1.1)		(0.002)		(0.0002)	
		Rz	e	0.073		0.47		0.059		0.11		12.0		0.030		0.0038	
				(0.004)		(0.01)		(0.001)		(0.01)		(1.6)		(0.001)		(0.001)	
Ĩ.	Before growth	h experiment															
	Initial		-	0.457		0.41		0.092		0.23		56.1		0.035		0.004	
				(0.005)		(0.05)		(0.007)		(0.01)		(3.2)		(0.002)		(0.001)	
	Sterilized		-	0.384		0.55		0.085		0.23		48.3		0.042		0.004	
				(0.032)		(0.06)		(0.005)		(0.03)		(0.4)		(0.001)		(0.001)	
	After growth	experiment															
	NI	Bk	4	0.327	*	0.33	ns	0.062	*	0.11	*	26.4	*	0.027	*	0.0025	*
				(0.001)		(0.03)		(0.005)		(0.01)		(2.9)		(0.006)		(0.0001)	
		Rz	4	0.231		0.35		0.052		0.09		19.9		0.017		0.0022	
				(0.016)		(0.05)		(0.003)		(0.01)		(1.4)		(0.003)		(0.0002)	
	SR	Bk	4	0.320	*	0.43	ns	0.058	*	0.11	su	20.3	su	0.025	su	0.0027	su
				(0.011)		(0.04)		(0.004)		(0.01)		(3.1)		(0.003)		(0.0003)	
		Rz	4	0.245		0.47		0.065		0.11		22.6		0.024		0.0025	
				(0.011)		(0.03)		(0.005)		(0.01)		(1.1)		(0.003)		(0.0006)	
dlm°				0.032		0.005		0.004		0.020		0.306		0.007		0.001	
^a Initié	ul = initial soil:	Sterilized $= 100$	% ste	rilized soi	I: IN	= intact	non s	terilized s	oil: S	R = steri	ized-	reinocula	ted so	lio			
b For r	n = 1 the standa	ard deviations a	re esti	mated fro	n ang	lytical r	e ulice	tion .	2								
° dlm	= detection limi	t of the method	1000			יו נואטון אין	2 2 1 2										

Soil	Treatment ^a	Component	u	N		As		Cd) mol/kg	r	Cu		Pb		Z	=
V	Z	Bk	4	18310	su	< dlm		4.49	su	14.1 ns	1.10	su	29.3	SU	25.4 0.7)	su	892	ц
		Rz	ŝ	(56) (56)		< dlm		(0.12) 4.56 (0.04)		(0.4) (0.1)	(0.02) 1.25 (0.02)		(17.0) 31.9 (0.79)		58.8 (0.5) (0.5)		873	
	SR	Bk	4	18162	su	< dlm		4.54	su	14.2 ns	1.12	su	29.6	su	25.6	us	914	8
		Rz	б	(222) 18736 18736		< dlm		(0.12) 4.65		(0.4) 14.6	1.23		31.6 31.6		(0.0) 28.7		876	
Ţ	NI	Bk	4	(111) 10192	*	1.73	*	(cu.u) 52.9	su	(0.1) 27.3 *	(0.00) 3.08 6.10)	*	(16.0) 114.1	*	(0.4) 113.1	*	1980	ц
		Rz	4	(289) 10741 (374)		(c1.0) 2.00 (0.13)		(1.4) 55.0 (3.3)		(1.4) 28.5 (1.2)	(0.19) 4.23 (0.38)		(5.2) 127.6 (6.3)		(115.7) (4.6)		1917	
	SR	Bk	4	10492	*	1.87	su	52.9	su	38.6 ns	3.46	*	115.8	*	115.8	*	12049	Ц
		Rz	4	(419) 18868 (336)		(c1.0) 1.60 (0.13)		(1.7) 53.6 (1.7)		(0.7) 29.3 (0.7)	(0.50) 4.42 (0.58)		(4.7) 124.9 (3.1)		(2.0) 119.0 (1.9)		1962	
dlm ^b				7.41		0.53		0.02		0.14	0.38		3.1		0.05		1.53	