### **Supplementary Information to the article:**

# Sorption and desorption of diverse contaminants of varying polarity in wastewater sludge with and without alum

Marie-France Morissette<sup>1</sup>, Sung Vo Duy<sup>1</sup>, Hans Peter H. Arp<sup>2</sup>, Sébastien Sauvé<sup>1\*</sup>

<sup>1</sup>Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC, Canada H3C 3J7

<sup>2</sup> Norwegian Geotechnical Institute (NGI), P.O. Box 3930 Ullevål Stadion, N-0806 Oslo, Norway

\*Corresponding author:

Sébastien Sauvé, Ph.D., Full Professor Université de Montréal Pavillon Roger-Gaudry, Chimie CP 6128 Centre-ville Montréal, QC, H3C 3J7 Canada

Tel 514 343-6749 Fax 514 343-2468, e-mail: sebastien.sauve@umontreal.ca

## S1. Batch equilibrium sorption kinetic model background information

According to the Organisation for Economic Co-operation and Development (OECD) guideline, kinetic sorption/desorption studies can be performed using a parallel or serial batch equilibrium method <sup>1</sup>. In the parallel method, several samples with the same liquid/solid ratios are prepared and one (or many) of the total number of samples are removed and analyzed at each selected time step. One drawback of this method is that samples are independent which may increase variability when dealing with a highly heterogeneous matrix such as wastewaters or sewage. In the serial method, a sample is prepared in duplicate. At each time step, a subsample is pipetted and centrifuged, an aliquot of the aqueous phase is taken and analyzed while the rest of the sample is resuspended and the experiment continues. Even if manipulations are more laborious with the parallel method, it is often preferred given its simpler mathematical treatment of results <sup>1</sup>.

## **S2. Instrumental Conditions**

Table S1. Gradient elution conditions used for solid phase extraction and chromatographicseparation

| Loading pur   | np            |            |                                      | Analytical p  | ump        |              |                                      |
|---------------|---------------|------------|--------------------------------------|---------------|------------|--------------|--------------------------------------|
| Time<br>(min) | A<br>(%)      | B<br>(%)   | Flow rate<br>(uL min <sup>-1</sup> ) | Time<br>(min) | A<br>(%)   | B<br>(%)     | Flow rate<br>(uL min <sup>-1</sup> ) |
| ()            | On-line SI    | PE loading | (p=)                                 | ()            | Column ec  | quilibration | (                                    |
| 0.00          | 100           | 0          | 1500                                 | 0.00          | 60         | 40           | 525                                  |
| 0.92          | 100           | 0          | 1500                                 | 0.92          | 60         | 40           | 525                                  |
| Loo           | p wash then S | SPE column | wash                                 | Elution       | and chroma | tographic se | eparation                            |
| 0.93          | 0             | 100        | 1500                                 | 2.45          | 45         | 55           | 525                                  |
| 4.50          | 0             | 100        | 1500                                 | 4.00          | 25         | 75           | 525                                  |
|               | SPE column    | conditionn | ing                                  | 5.10          | 20         | 80           | 525                                  |
| 4.51          | 100           | 0          | 1500                                 |               | Column eo  | quilibration |                                      |
|               |               |            |                                      | 5.11          | 60         | 40           | 525                                  |
|               |               |            |                                      | 7.00          | 60         | 40           | 525                                  |

 $A : H_2O + 0.1 \% HCOOH$ 

B : MeOH + 0.1 % HCOOH

|          | Precursor ion                       | Product ion | Intensity | TL  | CE   |
|----------|-------------------------------------|-------------|-----------|-----|------|
| Compound | (m/z)                               | (m/z)       | ratio (%) | (V) | (eV) |
| CAF      | 195                                 | 138         | 100       | 80  | 19   |
|          | [M+H]                               | 110         | 14 ± 1    | 80  | 23   |
| SMX      | 254                                 | 92          | 100       | 71  | 28   |
|          | [M+H]⁺                              | 108         | 77 ± 3    | 71  | 25   |
| DEA      | 188                                 | 146         | 100       | 74  | 18   |
|          | [M+H]⁺                              | 104         | 16 ± 1    | 74  | 22   |
| CBZ      | 237                                 | 194         | 100       | 77  | 18   |
|          | [M+H] <sup>+</sup>                  | 192         | 26 ± 1    | 77  | 23   |
| ATZ      | 216                                 | 174         | 100       | 71  | 18   |
|          | [M+H] <sup>+</sup>                  | 104         | 16 ± 1    | 71  | 31   |
| E2       | 255                                 | 159         | 100       | 100 | 17   |
|          | $[M-H_20+H]^+$                      | 133         | 37 ± 1    | 100 | 16   |
| EE2      | 279                                 | 133         | 100       | 87  | 15   |
|          | $[M-H_20+H]^+$                      | 159         | 86 ± 4    | 87  | 18   |
| NOR      | 299                                 | 109         | 100       | 114 | 37   |
|          | [M-H <sub>2</sub> 0+H] <sup>+</sup> | 91          | 59 ± 4    | 114 | 22   |
| DCF      | 296                                 | 250         | 100       | 73  | 18   |
|          | [M+H]⁺                              | 215         | 85 ± 7    | 73  | 14   |
| CAF*     | 198                                 | 140         | -         | 81  | 18   |
| SMX*     | 260                                 | 98          | -         | 77  | 27   |
| CBZ*     | 247                                 | 204         | -         | 82  | 20   |
| ATZ*     | 219                                 | 177         | -         | 84  | 17   |
| E2*      | 261                                 | 159         | -         | 83  | 29   |
| DCF*     | 300                                 | 219         | -         | 70  | 19   |

Table S2. MS/MS optimized parameters for all selected compounds

## **S3.** Analytical Validation and Quality Assurance / Quality Control

|          |                | Та            | ap water      |                     |                | W             | /astewater    |                     |
|----------|----------------|---------------|---------------|---------------------|----------------|---------------|---------------|---------------------|
| Compound | R <sup>2</sup> | LOD<br>(ng/L) | LOQ<br>(ng/L) | Linearity<br>(ng/L) | R <sup>2</sup> | LOD<br>(ng/L) | LOQ<br>(ng/L) | Linearity<br>(ng/L) |
| CAF      | 1.0000         | 0.5           | 1.5           | 1.5-50000           | 0.997<br>9     | 115           | 345           | 345-50000           |
| SMX      | 0.9998         | 1.0           | 3.0           | 3.0-50000           | 0.999<br>3     | 30            | 90            | 90-50000            |
| DEA      | 0.9996         | 1.0           | 3.0           | 3.0-50000           | 0.999<br>3     | 35            | 105           | 105-50000           |
| CBZ      | 0.9983         | 1.0           | 3.0           | 3.0-50000           | 0.998<br>5     | 65            | 195           | 195-50000           |
| ATZ      | 0.9995         | 0.5           | 1.5           | 1.5-50000           | 0.998<br>3     | 25            | 75            | 75-50000            |
| E2       | 0.9994         | 5.0           | 15.0          | 15.0-50000          | 0.998<br>9     | 115           | 345           | 345-50000           |
| EE2      | 0.9991         | 5.0           | 15.0          | 15.0-50000          | 0.997<br>6     | 110           | 330           | 330-50000           |
| NOR      | 0.9995         | 20.0          | 60.0          | 60.0-50000          | 0.999<br>8     | 100           | 300           | 300-50000           |
| DCF      | 0.9992         | 5.0           | 15.0          | 15.0-50000          | 0.9989         | 15            | 45            | 45-50000            |

**Table S3.** Validation parameters including correlation coefficient, LOD, LOQ and linearity of the method in filtered tap water and wastewater

| • | <b>Fable S4.</b> Validation parameters including repeatability (intra-day, n= 5) and reproductibility |
|---|-------------------------------------------------------------------------------------------------------|
| ( | inter-day, n =3) of the method in filtered tap water and wastewater                                   |

|          |                            | Tap v                         | vater                           |                              |                            | Waste                         | water                           |                              |
|----------|----------------------------|-------------------------------|---------------------------------|------------------------------|----------------------------|-------------------------------|---------------------------------|------------------------------|
| Compound | Repeat.<br>300 ng/L<br>(%) | Reprod.<br>300<br>ng/L<br>(%) | Repeat.<br>10000<br>ng/L<br>(%) | Reprod.<br>10000<br>ng/L (%) | Repeat.<br>300 ng/L<br>(%) | Reprod.<br>300<br>ng/L<br>(%) | Repeat.<br>10000<br>ng/L<br>(%) | Reprod.<br>10000<br>ng/L (%) |
| CAF      | 3                          | 4                             | 2                               | 3                            | 2                          | 3                             | 2                               | 3                            |
| SMX      | 4                          | 7                             | 2                               | 3                            | 8                          | 6                             | 5                               | 3                            |
| DEA      | 3                          | 8                             | 2                               | 6                            | 5                          | 7                             | 2                               | 3                            |
| CBZ      | 5                          | 6                             | 6                               | 8                            | 2                          | 5                             | 5                               | 5                            |
| ATZ      | 3                          | 8                             | 2                               | 3                            | 2                          | 4                             | 2                               | 5                            |
| E2       | 6                          | 10                            | 3                               | 7                            | 5                          | 10                            | 5                               | 5                            |
| EE2      | 6                          | 10                            | 6                               | 8                            | 5                          | 13                            | 6                               | 10                           |
| NOR      | 5                          | 9                             | 2                               | 6                            | 9                          | 12                            | 4                               | 15                           |
| DCF      | 7                          | 9                             | 4                               | 7                            | 5                          | 9                             | 4                               | 7                            |

## **S4. Recoveries and Mass Balance**

| _        | Recoveries (%)1 $50 \text{ ng g}^{-1}$ $200 \text{ ng g}^{-1}$ $72 \pm 2$ $60 \pm 3$ $60 \pm 9$ $59 \pm 5$ $97 \pm 1$ $95 \pm 5$ $99 \pm 10$ $97 \pm 9$ $94 \pm 4$ $95 \pm 5$ $60 \pm 12$ $61 \pm 3$ |                        |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|
| Compound | 50 ng g <sup>-1</sup>                                                                                                                                                                                | 200 ng g <sup>-1</sup> |  |
| CAF*     | 72 ± 2                                                                                                                                                                                               | 60 ± 3                 |  |
| SMX      | 60 ± 9                                                                                                                                                                                               | 59 ± 5                 |  |
| DEA      | 97 ± 1                                                                                                                                                                                               | 95 ± 5                 |  |
| CBZ      | 99 ± 10                                                                                                                                                                                              | 97 ± 9                 |  |
| ATZ      | 94 ± 4                                                                                                                                                                                               | 95 ± 5                 |  |
| E2       | 60 ± 12                                                                                                                                                                                              | 61 ± 3                 |  |
| EE2      | 103 ± 12                                                                                                                                                                                             | 94 ± 3                 |  |
| NOR      | 96 ± 2                                                                                                                                                                                               | 96 ± 12                |  |
| DCF      | 60 ± 10                                                                                                                                                                                              | 86 ± 9                 |  |

**Table S5.** Extraction recoveries (mean  $\pm$  SD) of each compound in sludge particles (n=3)

\* spiked at 500 and 2000 ng  $g^{-1}$ 

|          | Sorption<br>Mean ± SD | Desorption<br>Mean ± SD |
|----------|-----------------------|-------------------------|
| Compound | (%)                   | (%)                     |
| CAF      | 96 ± 13               | 91 ± 2                  |
| SMX      | 25 ± 45               | 82 ± 13                 |
| DEA      | 77 ± 28               | 103 ± 11                |
| CBZ      | 100 ± 9               | 90 ± 11                 |
| ATZ      | 77 ± 31               | 77 ± 19                 |
| E2       | 21 ± 8                | 7 ± 7                   |
| EE2      | 51 ± 19               | 44 ± 2                  |
| NOR      | 18 ± 32               | 63 ± 15                 |
| DCF      | 69 ± 18               | 57 ± 15                 |

 Table S6. Mass balance average from each sorption and desorption experiment

|          | WWTP- | -A (%) | WWTP- | •В (%) | WWTP-B-Alum (%) |      |  |
|----------|-------|--------|-------|--------|-----------------|------|--|
| Compound | 5 min | 48 h   | 5 min | 48 h   | 5 min           | 48 h |  |
| CAF      | 98    | 82     | 107   | 101    | 107             | 108  |  |
| SMX      | 83    | 0      | 102   | 83     | 101             | 6    |  |
| DEA      | 99    | 29     | 103   | 87     | 105             | 97   |  |
| CBZ      | 79    | 78     | 96    | 90     | 99              | 90   |  |
| ATZ      | 54    | 36     | 102   | 88     | 98              | 91   |  |
| E2       | 20    | 10     | 40    | 7      | 70              | 26   |  |
| EE2      | 10    | 14     | 23    | 19     | 43              | 36   |  |
| NOR      | 34    | 0      | 61    | 42     | 83              | 0    |  |
| DCF      | 39    | 48     | 46    | 35     | 98              | 87   |  |

**Table S7.** Compound remaining in aqueous phase after 5 min and 48 h in the three differentsludge samples

## **S5. Aqueous Concentration Changes After Spiking (Sorption Experiment)**

Data from the sorption kinetics experiment is presented in Figures S1-9 and Tables S8-16.



**Figure S1.** Aqueous phase concentration remaining vs time shaken after spiking and mass recovery for caffeine in the three different sludge samples



**Figure S2.** Aqueous phase concentration remaining vs time shaken after spiking and mass recovery for sulfamethoxazole in the three different sludge samples



**Figure S3.** Aqueous phase concentration remaining vs time shaken after spiking and mass recovery for desethylatrazine in the three different sludge samples.



**Figure S4.** Aqueous phase concentration remaining vs time shaken after spiking and mass recovery for carbamazepine in the three different sludge samples.



**Figure S5.** Aqueous phase concentration remaining vs time shaken after spiking and mass recovery for atrazine in the three different sludge samples.



**Figure S6.** Aqueous phase concentration remaining vs time shaken after spiking and mass recovery for  $17\beta$ -estradiol in the three different sludge samples



**Figure S7.** Aqueous phase concentration remaining vs time shaken after spiking and mass recovery for ethinylestradiol in the three different sludge samples



**Figure S8.** Aqueous phase concentration remaining vs time shaken after spiking and mass recovery for norethindrone in the three different sludge samples



**Figure S9.** Aqueous phase concentration remaining vs time shaken after spiking and mass recovery for diclofenac in the three different sludge samples

|                       | W                                                  | WTP-A                                                                              |      | WWTP-B                                             |                                                                                    |     | WWTP-B Alum                                        |                                                                                    |     |  |
|-----------------------|----------------------------------------------------|------------------------------------------------------------------------------------|------|----------------------------------------------------|------------------------------------------------------------------------------------|-----|----------------------------------------------------|------------------------------------------------------------------------------------|-----|--|
| Time<br>shaken<br>(h) | Concentration in<br>the aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD   | Concentration in<br>the aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD  | Concentration in<br>the aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD  |  |
| 0.01*                 | 50.7                                               | 100.0                                                                              | 10.1 | 51.5                                               | 100.0                                                                              | 3.1 | 76.1                                               | 100.0                                                                              | 5.3 |  |
| 0.08                  | 49.8                                               | 98.3                                                                               | 1.6  | 54.9                                               | 106.6                                                                              | 2.4 | 81.4                                               | 107.4                                                                              | 1.6 |  |
| 0.25                  | 46.6                                               | 92.0                                                                               | 3.2  | 52.6                                               | 102.0                                                                              | 1.5 | 77.4                                               | 101.7                                                                              | 3.5 |  |
| 0.5                   | 49.0                                               | 96.7                                                                               | 2.3  | 51.6                                               | 100.2                                                                              | 0.6 | 81.3                                               | 107.2                                                                              | 0.6 |  |
| 1                     | 47.6                                               | 93.9                                                                               | 0.8  | 51.6                                               | 100.1                                                                              | 3.1 | 83.3                                               | 110.0                                                                              | 5.4 |  |
| 2                     | 46.1                                               | 91.0                                                                               | 1.4  | 50.9                                               | 98.9                                                                               | 0.8 | 81.7                                               | 107.7                                                                              | 5.1 |  |
| 6                     | 48.3                                               | 95.3                                                                               | 0.2  | 50.0                                               | 97.1                                                                               | 1.2 | 83.8                                               | 110.7                                                                              | 4.0 |  |
| 24                    | 49.4                                               | 97.5                                                                               | 1.9  | 52.6                                               | 102.1                                                                              | 2.3 | 84.3                                               | 111.4                                                                              | 0.7 |  |
| 48                    | 41.5                                               | 81.9                                                                               | 4.7  | 51.9                                               | 100.8                                                                              | 5.6 | 81.6                                               | 107.6                                                                              | 4.3 |  |

Table S8. Aqueous phase concentration of caffeine vs time shaken after spiking

|                       | WV                                                 | WTP-A                                                                              |     | WWTP-B                                             |                                                                                    |     | WWTP-B Alum                                        |                                                                                    |      |  |
|-----------------------|----------------------------------------------------|------------------------------------------------------------------------------------|-----|----------------------------------------------------|------------------------------------------------------------------------------------|-----|----------------------------------------------------|------------------------------------------------------------------------------------|------|--|
| Time<br>shaken<br>(h) | Concentration in<br>the aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD  | Concentration in<br>the aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD  | Concentration in<br>the aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD   |  |
| 0.01*                 | 23.4                                               | 100.0                                                                              | 9.3 | 20.7                                               | 100.0                                                                              | 0.8 | 18.6                                               | 100.0                                                                              | 0.2  |  |
| 0.08                  | 19.4                                               | 82.8                                                                               | 5.9 | 21.028                                             | 101.5                                                                              | 1.8 | 18.754                                             | 100.8                                                                              | 9.0  |  |
| 0.25                  | 18.6                                               | 79.5                                                                               | 4.3 | 20.5                                               | 98.9                                                                               | 0.9 | 19.8                                               | 106.2                                                                              | 2.4  |  |
| 0.5                   | 18.7                                               | 79.7                                                                               | 2.0 | 20.2                                               | 97.4                                                                               | 4.8 | 19.7                                               | 106.0                                                                              | 1.1  |  |
| 1                     | 17.7                                               | 75.6                                                                               | 1.8 | 19.2                                               | 92.6                                                                               | 0.1 | 19.9                                               | 106.7                                                                              | 3.8  |  |
| 2                     | 18.3                                               | 78.1                                                                               | 3.3 | 19.5                                               | 94.3                                                                               | 1.5 | 17.4                                               | 93.5                                                                               | 7.5  |  |
| 6                     | 16.6                                               | 70.9                                                                               | 7.2 | 18.4                                               | 88.8                                                                               | 0.2 | 15.6                                               | 84.1                                                                               | 2.0  |  |
| 24                    | < LOD                                              | -                                                                                  | -   | 19.5                                               | 94.0                                                                               | 5.1 | 7.4                                                | 39.5                                                                               | 3.0  |  |
| 48                    | < LOD                                              | -                                                                                  | -   | 17.3                                               | 83.4                                                                               | 6.8 | 1.1                                                | 6.1                                                                                | 13.2 |  |

Table S9. Aqueous phase concentration of sulfamethoxazole vs time shaken after spiking

|                       | WV                                                 | WTP-A                                                                              |     | WV                                                 | WTP-B                                                                              |     | WWTP-B Alum                                        |                                                                                    |      |  |
|-----------------------|----------------------------------------------------|------------------------------------------------------------------------------------|-----|----------------------------------------------------|------------------------------------------------------------------------------------|-----|----------------------------------------------------|------------------------------------------------------------------------------------|------|--|
| Time<br>shaken<br>(h) | Concentration in<br>the aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD  | Concentration in<br>the aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD  | Concentration in<br>the aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD   |  |
| 0.01*                 | 19.9                                               | 100.0                                                                              | -   | 22.3                                               | 100.0                                                                              | 1.4 | 20.0                                               | 100.0                                                                              | 1.3  |  |
| 0.08                  | 19.6                                               | 98.5                                                                               | 3.7 | 22.9                                               | 103.0                                                                              | 3.0 | 21.1                                               | 105.2                                                                              | 0.3  |  |
| 0.25                  | 18.8                                               | 94.3                                                                               | 2.4 | 21.7                                               | 97.7                                                                               | 3.4 | 21.3                                               | 106.3                                                                              | 1.0  |  |
| 0.5                   | 18.9                                               | 94.8                                                                               | 6.4 | 21.9                                               | 98.2                                                                               | 0.6 | 20.9                                               | 104.6                                                                              | 2.2  |  |
| 1                     | 18.0                                               | 90.4                                                                               | 0.3 | 22.0                                               | 98.9                                                                               | 2.0 | 21.2                                               | 105.7                                                                              | 3.7  |  |
| 2                     | 18.2                                               | 91.4                                                                               | 2.8 | 21.7                                               | 97.3                                                                               | 1.9 | 21.0                                               | 104.7                                                                              | 6.7  |  |
| 6                     | 15.1                                               | 76.0                                                                               | 0.4 | 21.6                                               | 96.9                                                                               | 1.5 | 21.0                                               | 105.1                                                                              | 4.3  |  |
| 24                    | 7.3                                                | 36.6                                                                               | 3.6 | 21.5                                               | 96.6                                                                               | 6.0 | 20.9                                               | 104.2                                                                              | 3.7  |  |
| 48                    | 5.8                                                | 29.0                                                                               | 2.0 | 19.3                                               | 86.6                                                                               | 1.2 | 19.5                                               | 97.3                                                                               | 11.7 |  |

Table S10. Aqueous phase concentration of desethylatrazine vs time shaken after spiking

|                       | W                                                  | WTP-A                                                                              |      | WWTP-B                                             |                                                                                    |     | WWTP-B Alum                                        |                                                                                    |      |  |
|-----------------------|----------------------------------------------------|------------------------------------------------------------------------------------|------|----------------------------------------------------|------------------------------------------------------------------------------------|-----|----------------------------------------------------|------------------------------------------------------------------------------------|------|--|
| Time<br>shaken<br>(h) | Concentration in<br>the aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD   | Concentration<br>in the aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD  | Concentration<br>in the aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD   |  |
| 0.01*                 | 21.7                                               | 100.0                                                                              | 0.1  | 34.5                                               | 100.0                                                                              | 0.0 | 18.9                                               | 100.0                                                                              | 2.7  |  |
| 0.08                  | 17.1                                               | 79.1                                                                               | 5.2  | 33.165                                             | 96.2                                                                               | 1.0 | 18.784                                             | 99.5                                                                               | 4.0  |  |
| 0.25                  | 15.4                                               | 71.2                                                                               | 5.0  | 31.2                                               | 90.4                                                                               | 0.7 | 18.8                                               | 99.7                                                                               | 8.2  |  |
| 0.5                   | 16.1                                               | 74.2                                                                               | 2.0  | 32.1                                               | 93.0                                                                               | 2.5 | 18.0                                               | 95.3                                                                               | 1.5  |  |
| 1                     | 15.3                                               | 70.5                                                                               | 4.3  | 31.2                                               | 90.4                                                                               | 1.0 | 18.2                                               | 96.3                                                                               | 0.6  |  |
| 2                     | 15.6                                               | 72.3                                                                               | 3.2  | 31.5                                               | 91.4                                                                               | 5.2 | 18.0                                               | 95.2                                                                               | 1.8  |  |
| 6                     | 15.5                                               | 71.7                                                                               | 0.3  | 30.8                                               | 89.2                                                                               | 3.1 | 18.6                                               | 98.4                                                                               | 2.9  |  |
| 24                    | 16.4                                               | 75.7                                                                               | 10.7 | 32.6                                               | 94.5                                                                               | 3.7 | 17.8                                               | 94.2                                                                               | 0.7  |  |
| 48                    | 16.8                                               | 77.6                                                                               | 1.3  | 31.1                                               | 90.2                                                                               | 6.4 | 17.1                                               | 90.5                                                                               | 12.4 |  |

Table S11. Aqueous phase concentration of carbamazepine vs time shaken after spiking

|                       | WWTP-A                                                |                                                                                    |     | WWTP-B                                                |                                                                                    |     | WWTP-B Alum                                           |                                                                                    |     |
|-----------------------|-------------------------------------------------------|------------------------------------------------------------------------------------|-----|-------------------------------------------------------|------------------------------------------------------------------------------------|-----|-------------------------------------------------------|------------------------------------------------------------------------------------|-----|
| Time<br>shaken<br>(h) | Concentration<br>in the<br>aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD  | Concentration<br>in the<br>aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD  | Concentration<br>in the<br>aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD  |
| 0.01*                 | 20.9                                                  | 100.0                                                                              | -   | 20.1                                                  | 100.0                                                                              | 0.0 | 19.2                                                  | 100.0                                                                              | 2.6 |
| 0.08                  | 11.2                                                  | 53.5                                                                               | 0.2 | 20.4                                                  | 101.8                                                                              | 5.0 | 18.9                                                  | 98.5                                                                               | 2.8 |
| 0.25                  | 10.1                                                  | 48.2                                                                               | 4.1 | 18.9                                                  | 94.1                                                                               | 1.7 | 19.5                                                  | 101.6                                                                              | 0.2 |
| 0.5                   | 10.5                                                  | 50.4                                                                               | 6.1 | 19.5                                                  | 96.9                                                                               | 1.8 | 19.2                                                  | 100.2                                                                              | 1.0 |
| 1                     | 10.9                                                  | 52.0                                                                               | 2.3 | 19.4                                                  | 96.4                                                                               | 0.1 | 18.8                                                  | 98.2                                                                               | 7.7 |
| 2                     | 11.9                                                  | 56.8                                                                               | 0.4 | 18.9                                                  | 94.2                                                                               | 0.0 | 19.4                                                  | 101.0                                                                              | 4.4 |
| 6                     | 10.5                                                  | 50.3                                                                               | 3.9 | 19.5                                                  | 97.1                                                                               | 4.9 | 19.2                                                  | 100.2                                                                              | 1.7 |
| 24                    | 8.1                                                   | 38.8                                                                               | 2.2 | 20.3                                                  | 101.0                                                                              | 4.3 | 18.5                                                  | 96.6                                                                               | 1.0 |
| 48                    | 7.5                                                   | 36.0                                                                               | 9.0 | 17.8                                                  | 88.5                                                                               | 1.6 | 17.4                                                  | 90.9                                                                               | 9.1 |

Table S12. Aqueous phase concentration of atrazine vs time shaken after spiking

|                       | WWTP-A                                             |                                                                                    |      | WWTP-B                                             |                                                                                    |     | WWTP-B Alum                                        |                                                                                    |      |
|-----------------------|----------------------------------------------------|------------------------------------------------------------------------------------|------|----------------------------------------------------|------------------------------------------------------------------------------------|-----|----------------------------------------------------|------------------------------------------------------------------------------------|------|
| Time<br>shaken<br>(h) | Concentration in<br>the aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD   | Concentration<br>in the aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD  | Concentration<br>in the aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD   |
| 0.01*                 | 19.3                                               | 100.0                                                                              | 5.9  | 16.6                                               | 100.0                                                                              | 1.3 | 16.8                                               | 100.0                                                                              | 10.0 |
| 0.08                  | 3.8                                                | 19.7                                                                               | 4.2  | 6.7                                                | 40.5                                                                               | 1.6 | 11.8                                               | 70.3                                                                               | 6.0  |
| 0.25                  | 3.1                                                | 16.2                                                                               | 3.8  | 5.7                                                | 34.5                                                                               | 7.7 | 10.7                                               | 63.8                                                                               | 1.3  |
| 0.5                   | 2.7                                                | 14.0                                                                               | 3.9  | 5.8                                                | 34.8                                                                               | 0.4 | 8.3                                                | 49.1                                                                               | 0.4  |
| 1                     | 2.2                                                | 11.3                                                                               | 4.1  | 5.3                                                | 32.2                                                                               | 4.7 | 5.3                                                | 31.4                                                                               | 4.3  |
| 2                     | 1.3                                                | 6.8                                                                                | 4.9  | 4.6                                                | 27.7                                                                               | 0.9 | 1.9                                                | 11.5                                                                               | 7.4  |
| 6                     | 0.8                                                | 3.9                                                                                | 7.2  | 2.8                                                | 17.1                                                                               | 9.0 | 3.2                                                | 19.0                                                                               | 2.4  |
| 24                    | 1.3                                                | 6.7                                                                                | 10.3 | 1.3                                                | 8.0                                                                                | 2.6 | 4.1                                                | 24.3                                                                               | 4.8  |
| 48                    | 1.9                                                | 10.0                                                                               | 7.8  | 1.2                                                | 7.0                                                                                | 0.0 | 4.4                                                | 26.4                                                                               | 1.2  |

Table S13. Aqueous phase concentration of  $17\beta$ -estradiol vs time shaken after spiking

|                       | WWTP-A                                             |                                                                                    |      | WWTP-B                                             |                                                                                    |     | WWTP-B Alum                                        |                                                                                    |     |
|-----------------------|----------------------------------------------------|------------------------------------------------------------------------------------|------|----------------------------------------------------|------------------------------------------------------------------------------------|-----|----------------------------------------------------|------------------------------------------------------------------------------------|-----|
| Time<br>shaken<br>(h) | Concentration in<br>the aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD   | Concentration in<br>the aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD  | Concentration in<br>the aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD  |
| 0.01*                 | 19.7                                               | 100.0                                                                              | 1.9  | 19.1                                               | 100.0                                                                              | 5.9 | 19.5                                               | 100.0                                                                              | 8.7 |
| 0.08                  | 2.0                                                | 10.0                                                                               | 5.8  | 4.362                                              | 22.8                                                                               | 1.4 | 8.3                                                | 42.6                                                                               | 7.6 |
| 0.25                  | 1.8                                                | 9.2                                                                                | 0.4  | 3.9                                                | 20.4                                                                               | 2.8 | 8.2                                                | 42.0                                                                               | 7.4 |
| 0.5                   | 1.8                                                | 9.0                                                                                | 2.3  | 4.1                                                | 21.5                                                                               | 4.0 | 8.4                                                | 43.0                                                                               | 6.8 |
| 1                     | 1.8                                                | 9.1                                                                                | 3.6  | 3.8                                                | 20.0                                                                               | 0.2 | 8.6                                                | 44.0                                                                               | 1.0 |
| 2                     | 1.9                                                | 9.5                                                                                | 11.4 | 3.8                                                | 19.7                                                                               | 6.3 | 8.2                                                | 41.8                                                                               | 0.1 |
| 6                     | 1.9                                                | 9.9                                                                                | 8.6  | 3.4                                                | 17.9                                                                               | 1.0 | 7.2                                                | 36.7                                                                               | 4.7 |
| 24                    | 2.3                                                | 11.7                                                                               | 10.5 | 3.9                                                | 20.2                                                                               | 2.8 | 7.2                                                | 36.8                                                                               | 1.7 |
| 48                    | 2.7                                                | 13.6                                                                               | 3.1  | 3.6                                                | 18.6                                                                               | 5.8 | 7.0                                                | 35.6                                                                               | 0.5 |

Table S14. Aqueous phase concentration of ethinylestradiol vs time shaken after spiking

|                       | WWTP-A                                             |                                                                                    |      | WWTP-B                                             |                                                                                    |     | WWTP-B Alum                                        |                                                                                    |     |
|-----------------------|----------------------------------------------------|------------------------------------------------------------------------------------|------|----------------------------------------------------|------------------------------------------------------------------------------------|-----|----------------------------------------------------|------------------------------------------------------------------------------------|-----|
| Time<br>shaken<br>(h) | Concentration in<br>the aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD   | Concentration in<br>the aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD  | Concentration in<br>the aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD  |
| 0.01*                 | 20.2                                               | 100.0                                                                              | -    | 22.8                                               | 100.0                                                                              | 3.0 | 19.8                                               | 100.0                                                                              | 4.7 |
| 0.08                  | 6.8                                                | 33.7                                                                               | 3.5  | 13.907                                             | 60.9                                                                               | 2.1 | 16.473                                             | 83.2                                                                               | 1.0 |
| 0.25                  | 6.3                                                | 31.3                                                                               | 0.1  | 12.6                                               | 55.2                                                                               | 7.0 | 15.5                                               | 78.4                                                                               | 3.5 |
| 0.5                   | 6.3                                                | 31.0                                                                               | 7.7  | 12.9                                               | 56.6                                                                               | 3.8 | 15.7                                               | 79.5                                                                               | 0.1 |
| 1                     | 5.5                                                | 27.1                                                                               | 0.8  | 12.3                                               | 54.0                                                                               | 1.7 | 15.7                                               | 79.5                                                                               | 1.8 |
| 2                     | 4.5                                                | 22.4                                                                               | 6.0  | 11.8                                               | 51.5                                                                               | 2.2 | 15.4                                               | 77.7                                                                               | 6.2 |
| 6                     | 3.2                                                | 15.7                                                                               | 4.9  | 10.8                                               | 47.3                                                                               | 2.6 | 12.6                                               | 63.8                                                                               | 0.4 |
| 24                    | 0.8                                                | 3.7                                                                                | 14.0 | 10.6                                               | 46.6                                                                               | 9.1 | 2.1                                                | 10.4                                                                               | 9.6 |
| 48                    | < LOD                                              | -                                                                                  | -    | 9.7                                                | 42.4                                                                               | 5.1 | < LOD                                              | -                                                                                  | -   |

Table S15. Aqueous phase concentration of norethindrone vs time shaken after spiking

|                       | WWTP-A                                             |                                                                                    |      | WWTP-B                                             |                                                                                    |     | WWTP-B Alum                                        |                                                                                    |      |
|-----------------------|----------------------------------------------------|------------------------------------------------------------------------------------|------|----------------------------------------------------|------------------------------------------------------------------------------------|-----|----------------------------------------------------|------------------------------------------------------------------------------------|------|
| Time<br>shaken<br>(h) | Concentration in<br>the aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD   | Concentration<br>in the aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD  | Concentration<br>in the aqueous<br>phase<br>(µg/L) | Normalized<br>concentration<br>relative to the<br>initial<br>concentration*<br>(%) | SD   |
| 0.01*                 | 12.3                                               | 100.0                                                                              | 9.8  | 17.4                                               | 100.0                                                                              | 2.3 | 18.1                                               | 100.0                                                                              | 0.9  |
| 0.08                  | 4.7                                                | 38.5                                                                               | 3.9  | 8.0                                                | 46.3                                                                               | 0.8 | 17.7                                               | 97.9                                                                               | 3.7  |
| 0.25                  | 3.9                                                | 31.5                                                                               | 7.0  | 7.2                                                | 41.2                                                                               | 0.2 | 16.8                                               | 92.8                                                                               | 2.6  |
| 0.5                   | 3.6                                                | 29.4                                                                               | 1.1  | 7.0                                                | 40.3                                                                               | 4.9 | 16.6                                               | 91.5                                                                               | 1.5  |
| 1                     | 3.7                                                | 30.1                                                                               | 4.1  | 6.4                                                | 37.0                                                                               | 6.6 | 17.6                                               | 96.9                                                                               | 6.8  |
| 2                     | 4.0                                                | 32.3                                                                               | 1.8  | 6.2                                                | 35.4                                                                               | 0.6 | 16.7                                               | 92.2                                                                               | 11.2 |
| 6                     | 5.0                                                | 40.3                                                                               | 19.0 | 5.5                                                | 31.4                                                                               | 2.3 | 16.1                                               | 89.0                                                                               | 2.8  |
| 24                    | 4.9                                                | 39.5                                                                               | 3.9  | 6.0                                                | 34.7                                                                               | 7.2 | 15.2                                               | 83.9                                                                               | 7.1  |
| 48                    | 5.9                                                | 47.7                                                                               | 3.2  | 6.1                                                | 34.9                                                                               | 3.1 | 15.8                                               | 87.1                                                                               | 4.7  |

Table S16. Aqueous phase concentration of diclofenac vs time shaken after spiking

## **S6. Desorption and Rinsing Figures**

Data from the desorption kinetics experiment is presented in Figures S10-18 and Tables S17-25.



**Figure S10.** Cumulative desorption of caffeine in the two different sludge samples as a function of time and rinsing step (indicated by vertical lines) relative to the amount sorbed and mass recovery compared to the original spiked amount.



**Figure S11.** Cumulative desorption of sulfamethoxazole in the two different sludge samples as a function of time and rinsing step (indicated by vertical lines) relative to the amount sorbed and mass recovery compared to the original spiked amount.



**Figure S12.** Cumulative desorption of desethylatrazine in the two different sludge samples as a function of time and rinsing step (indicated by vertical lines) relative to the amount sorbed and mass recovery compared to the original spiked amount.



**Figure S13.** Cumulative desorption of carbamazepine in the two different sludge samples as a function of time and rinsing step (indicated by vertical lines) relative to the amount sorbed and mass recovery compared to the original spiked amount.



**Figure S14.** Cumulative desorption of atrazine in the two different sludge samples as a function of time and rinsing step (indicated by vertical lines) relative to the amount sorbed and mass recovery compared to the original spiked amount.



**Figure S15.** Cumulative desorption of  $17\beta$ -estradiol in the two different sludge samples as a function of time and rinsing step (indicated by vertical lines) relative to the amount sorbed and mass recovery compared to the original spiked amount.



**Figure S16.** Cumulative desorption of ethinylestradiol in the two different sludge samples as a function of time and rinsing step (indicated by vertical lines) relative to the amount sorbed and mass recovery compared to the original spiked amount.



**Figure S17.** Cumulative desorption of norethindrone in the two different sludge samples as a function of time and rinsing step (indicated by vertical lines) relative to the amount sorbed and mass recovery compared to the original spiked amount.



**Figure S18.** Cumulative desorption of diclofenac in the two different sludge samples as a function of time and rinsing step (indicated by vertical lines) relative to the amount sorbed and mass recovery compared to the original spiked amount.

|          | WWTP-A                           |                                                                                                                        | WWTP-B                        |                                                                                                                        |
|----------|----------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Time (h) | Concentration desorbed<br>(ng/g) | Cumulative<br>normalized<br>desorbed<br>concentration<br>relative to the<br>expected desorbed<br>concentration*<br>(%) | Concentration desorbed (ng/g) | Cumulative<br>normalized<br>desorbed<br>concentration<br>relative to the<br>expected desorbed<br>concentration*<br>(%) |
| [0-1h]   | 81.2                             | 16.4                                                                                                                   | 209.9                         | 27.2                                                                                                                   |
| [1-6h]   | 24.5                             | 21.3                                                                                                                   | 54.5                          | 34.2                                                                                                                   |
| [6-24h]  | 122.7                            | 46.1                                                                                                                   | 72.6                          | 43.6                                                                                                                   |
| [24-48h] | 120.9                            | 70.5                                                                                                                   | 211.7                         | 71.0                                                                                                                   |
| [48-72h] | 101.0                            | 90.9                                                                                                                   | 95.9                          | 83.4                                                                                                                   |

#### Table S17. Released concentration of caffeine from the solid phase of vs time

\* For compound with mass balance < 80 % after sorption, the mass balance was taken into account in the expected desorbed concentration considering that what was lost could not desorb from the solid phase (i.e. Cumulative desorbed = (amount in aqueous phase)/(mass sorbed to solid phase after sorption experiment).

| Table S18. Released | l concentration of s | ulfamethoxazole | from the solid | phase of vs time |
|---------------------|----------------------|-----------------|----------------|------------------|
|---------------------|----------------------|-----------------|----------------|------------------|

|          | WWTP-A                           |                                                                                                                        | WWTP-B                           |                                                                                                                        |  |  |
|----------|----------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
| Time (h) | Concentration desorbed<br>(ng/g) | Cumulative<br>normalized<br>desorbed<br>concentration<br>relative to the<br>expected desorbed<br>concentration*<br>(%) | Concentration desorbed<br>(ng/g) | Cumulative<br>normalized<br>desorbed<br>concentration<br>relative to the<br>expected desorbed<br>concentration*<br>(%) |  |  |
| [0-1h]   | 22.5                             | 13.0                                                                                                                   | 78.9                             | 29.3                                                                                                                   |  |  |
| [1-6h]   | -1.9                             | 11.9                                                                                                                   | -14.8                            | 23.8                                                                                                                   |  |  |
| [6-24h]  | 16.5                             | 21.4                                                                                                                   | 27.4                             | 34.0                                                                                                                   |  |  |
| [24-48h] | 14.8                             | 30.0                                                                                                                   | 25.0                             | 43.3                                                                                                                   |  |  |
| [48-72h] | -3.4                             | 28.0                                                                                                                   | 8.2                              | 46.3                                                                                                                   |  |  |

\* For compound with mass balance < 80 % after sorption, the mass balance was taken into account in the expected desorbed concentration considering that what was lost could not desorb from the solid phase (i.e. Cumulative desorbed = (amount in aqueous phase)/(mass sorbed to solid phase after sorption experiment).

| Table S19. F | Released | concentration | of deset | hylatrazine | e from the | solid p | hase of | vs time |
|--------------|----------|---------------|----------|-------------|------------|---------|---------|---------|
|              |          |               |          |             |            |         |         |         |

|          | WWTP-A                           |                                                                                                                        | WWTP-B                           |                                                                                                                        |  |  |
|----------|----------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
| Time (h) | Concentration desorbed<br>(ng/g) | Cumulative<br>normalized<br>desorbed<br>concentration<br>relative to the<br>expected desorbed<br>concentration*<br>(%) | Concentration desorbed<br>(ng/g) | Cumulative<br>normalized<br>desorbed<br>concentration<br>relative to the<br>expected desorbed<br>concentration*<br>(%) |  |  |
| [0-1h]   | 346                              | 80.4                                                                                                                   | 405.4                            | 94.2                                                                                                                   |  |  |
| [1-6h]   | -38                              | 71.6                                                                                                                   | -39.9                            | 85.0                                                                                                                   |  |  |
| [6-24h]  | 18                               | 75.8                                                                                                                   | -62.0                            | 70.5                                                                                                                   |  |  |
| [24-48h] | 100                              | 104.1                                                                                                                  | 37.0                             | 79.1                                                                                                                   |  |  |
| [48-72h] | -10                              | 101.7                                                                                                                  | 7.1                              | 80.8                                                                                                                   |  |  |

|          | WWTP-A                           |                                                                                                                        | WWTP-B                           |                                                                                                                        |  |  |
|----------|----------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
| Time (h) | Concentration desorbed<br>(ng/g) | Cumulative<br>normalized<br>desorbed<br>concentration<br>relative to the<br>expected desorbed<br>concentration*<br>(%) | Concentration desorbed<br>(ng/g) | Cumulative<br>normalized<br>desorbed<br>concentration<br>relative to the<br>expected desorbed<br>concentration*<br>(%) |  |  |
| [0-1h]   | 158.7                            | 30.3                                                                                                                   | 389.9                            | 57.8                                                                                                                   |  |  |
| [1-6h]   | 3.8                              | 31.1                                                                                                                   | 35.6                             | 63.1                                                                                                                   |  |  |
| [6-24h]  | 29.2                             | 36.6                                                                                                                   | -38.9                            | 57.3                                                                                                                   |  |  |
| [24-48h] | 133.1                            | 62.1                                                                                                                   | 151.9                            | 79.8                                                                                                                   |  |  |
| [48-72h] | 64.2                             | 74.3                                                                                                                   | 65.0                             | 89.5                                                                                                                   |  |  |

#### Table S20. Released concentration of carbamazepine from the solid phase of vs time

\* For compound with mass balance < 80 % after sorption, the mass balance was taken into account in the expected desorbed concentration considering that what was lost could not desorb from the solid phase (i.e. Cumulative desorbed = (amount in aqueous phase)/(mass sorbed to solid phase after sorption experiment).

|          | WWTP-A                           |                                                                                                                        | WWTP-B                        |                                                                                                                        |  |  |
|----------|----------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
| Time (h) | Concentration desorbed<br>(ng/g) | Cumulative<br>normalized<br>desorbed<br>concentration<br>relative to the<br>expected desorbed<br>concentration*<br>(%) | Concentration desorbed (ng/g) | Cumulative<br>normalized<br>desorbed<br>concentration<br>relative to the<br>expected desorbed<br>concentration*<br>(%) |  |  |
| [0-1h]   | 197.0                            | 46.8                                                                                                                   | 415.2                         | 56.6                                                                                                                   |  |  |
| [1-6h]   | 4.8                              | 47.9                                                                                                                   | 55.6                          | 64.2                                                                                                                   |  |  |
| [6-24h]  | 33.7                             | 55.9                                                                                                                   | -85.1                         | 52.6                                                                                                                   |  |  |
| [24-48h] | 114.7                            | 83.2                                                                                                                   | 160.4                         | 74.4                                                                                                                   |  |  |
| [48-72h] | 58.2                             | 97.0                                                                                                                   | 59.9                          | 82.6                                                                                                                   |  |  |

Table S21. Released concentration of atrazine from the solid phase of vs time

\* For compound with mass balance < 80 % after sorption, the mass balance was taken into account in the expected desorbed concentration considering that what was lost could not desorb from the solid phase (i.e. Cumulative desorbed = (amount in aqueous phase)/(mass sorbed to solid phase after sorption experiment).

|          | WWTP-A                        |                                                                                                                        | WWTP-B                           |                                                                                                                        |  |
|----------|-------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------|--|
| Time (h) | Concentration desorbed (ng/g) | Cumulative<br>normalized<br>desorbed<br>concentration<br>relative to the<br>expected desorbed<br>concentration*<br>(%) | Concentration desorbed<br>(ng/g) | Cumulative<br>normalized<br>desorbed<br>concentration<br>relative to the<br>expected desorbed<br>concentration*<br>(%) |  |
| [0-1h]   | 3.9                           | 10.4                                                                                                                   | 81.6                             | 26.5                                                                                                                   |  |
| [1-6h]   | -3.7                          | 0.3                                                                                                                    | -28.0                            | 17.4                                                                                                                   |  |
| [6-24h]  | 0.0                           | 0.4                                                                                                                    | -17.4                            | 11.7                                                                                                                   |  |
| [24-48h] | 16.3                          | 44.4                                                                                                                   | 79.6                             | 37.5                                                                                                                   |  |
| [48-72h] | 0.2                           | 44.9                                                                                                                   | 94.4                             | 68.1                                                                                                                   |  |

#### Table S22. Released concentration of $17\beta$ -estradiol from the solid phase of vs time

|          | WWTP-A                           |                                                                                                                        | WWTP-B                           |                                                                                                                        |  |  |
|----------|----------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
| Time (h) | Concentration desorbed<br>(ng/g) | Cumulative<br>normalized<br>desorbed<br>concentration<br>relative to the<br>expected desorbed<br>concentration*<br>(%) | Concentration desorbed<br>(ng/g) | Cumulative<br>normalized<br>desorbed<br>concentration<br>relative to the<br>expected desorbed<br>concentration*<br>(%) |  |  |
| [0-1h]   | 60.5                             | 9.9                                                                                                                    | 247.8                            | 27.0                                                                                                                   |  |  |
| [1-6h]   | -0.1                             | 9.9                                                                                                                    | -5.9                             | 26.4                                                                                                                   |  |  |
| [6-24h]  | 18.1                             | 12.9                                                                                                                   | 13.2                             | 27.8                                                                                                                   |  |  |
| [24-48h] | 82.9                             | 26.4                                                                                                                   | 222.6                            | 52.1                                                                                                                   |  |  |
| [48-72h] | 65.1                             | 37.1                                                                                                                   | 202.5                            | 74.1                                                                                                                   |  |  |

#### Table S23. Released concentration of ethinylestradiol from the solid phase of vs time

\* For compound with mass balance < 80 % after sorption, the mass balance was taken into account in the expected desorbed concentration considering that what was lost could not desorb from the solid phase (i.e. Cumulative desorbed = (amount in aqueous phase)/(mass sorbed to solid phase after sorption experiment).

|          | WWTP-A                           |                                                                                                                        | WWTP-B                           |                                                                                                                        |  |  |
|----------|----------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
| Time (h) | Concentration desorbed<br>(ng/g) | Cumulative<br>normalized<br>desorbed<br>concentration<br>relative to the<br>expected desorbed<br>concentration*<br>(%) | Concentration desorbed<br>(ng/g) | Cumulative<br>normalized<br>desorbed<br>concentration<br>relative to the<br>expected desorbed<br>concentration*<br>(%) |  |  |
| [0-1h]   | 45.0                             | 6.2                                                                                                                    | 361.6                            | 32.6                                                                                                                   |  |  |
| [1-6h]   | -30.3                            | 2.0                                                                                                                    | 18.9                             | 34.3                                                                                                                   |  |  |
| [6-24h]  | -12.0                            | 0.4                                                                                                                    | -59.3                            | 29.0                                                                                                                   |  |  |
| [24-48h] | 3.6                              | 0.9                                                                                                                    | 68.5                             | 35.1                                                                                                                   |  |  |
| [48-72h] | 1.3                              | 1.1                                                                                                                    | -1.7                             | 35.0                                                                                                                   |  |  |

Table S24. Released concentration of norethindrone from the solid phase of vs time

\* For compound with mass balance < 80 % after sorption, the mass balance was taken into account in the expected desorbed concentration considering that what was lost could not desorb from the solid phase (i.e. Cumulative desorbed = (amount in aqueous phase)/(mass sorbed to solid phase after sorption experiment).

|          | WWTP-A                           |                                                                                                                        | WWTP-B                           |                                                                                                                        |  |
|----------|----------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------|--|
| Time (h) | Concentration desorbed<br>(ng/g) | Cumulative<br>normalized<br>desorbed<br>concentration<br>relative to the<br>expected desorbed<br>concentration*<br>(%) | Concentration desorbed<br>(ng/g) | Cumulative<br>normalized<br>desorbed<br>concentration<br>relative to the<br>expected desorbed<br>concentration*<br>(%) |  |
| [0-1h]   | 125.7                            | 17.5                                                                                                                   | 526.8                            | 33.4                                                                                                                   |  |
| [1-6h]   | 10.4                             | 18.9                                                                                                                   | 8.6                              | 33.9                                                                                                                   |  |
| [6-24h]  | 14.1                             | 20.9                                                                                                                   | 32.5                             | 36.0                                                                                                                   |  |
| [24-48h] | 164.2                            | 43.7                                                                                                                   | 328.4                            | 56.8                                                                                                                   |  |
| [48-72h] | 106.9                            | 58.5                                                                                                                   | 132.0                            | 65.2                                                                                                                   |  |

#### Table S25. Released concentration of diclofenac from the solid phase of vs time

### S7. Rinsing factors and desorption K<sub>d</sub>

Based on how the desorption work was done (multiple rinsing at fixed time steps), the determination of a desorption constant could not be derived using standard kinetic models. It was then decided to estimate rinsing factors, i.e., the number of rinsing steps needed to desorb 50 and 99 % of each compound, taking into account the desorbed quantities during the first three rinsings to a L/S value of  $0.02 - 0.04 \text{ L/g}_{dry sludge}$ , using the equation:

% desorbed = 
$$m \ln(V_{water}) + b$$
 (1)

Where V<sub>water</sub> is the water needed to achieve a certain level of desorption, and *m* and *b* are regression coefficients. The number of rinsing steps required is then derived based on the extrapolated V<sub>water</sub> needed, taking into account the volume used in each rinsing step (7 mL for WWTP-A and 8 mL for WWTP-B). Results are presented in Table S26. As expected, compounds with modest sorption would require fewer dilution steps (1 to 6) than compounds whose sorption is greater (2 to 53). Also, the data show that sludge samples coming from WWTP-A in which sorption was more pronounced (due to a higher OC content) would need more dilutions in order to fully desorb the compounds than the sludge samples from WWTP-B.

| <u>_</u> | W          | WTP-A            | WWTP-B                     |      |  |  |
|----------|------------|------------------|----------------------------|------|--|--|
|          | Number of  | f rinsing (7 mL) | Number of rinsing (8 mL)   |      |  |  |
|          | needed for | a desorption of  | needed for a desorption of |      |  |  |
| Compound | 99%        | 50%              | 99%                        | 50%  |  |  |
| CAF      | 4          | 1                | 5                          | 1    |  |  |
| SMX      | n.a.       | n.a.             | n.a.                       | n.a. |  |  |
| DEA      | 2          | 1                | n.a                        | n.a  |  |  |
| CBZ      | 6          | 2                | 2                          | 1    |  |  |
| ATZ      | 4          | 1                | 5                          | 1    |  |  |
| E2       | n.a.       | n.a.             | n.a.                       | n.a. |  |  |
| EE2      | 53         | 6                | 6                          | 2    |  |  |
| NOR      | n.a        | n.a              | n.a.                       | n.a. |  |  |
| DCF      | 10         | 3                | 10                         | 2    |  |  |

Table S26. Number of rinsing to L/S 0.02-0.04 needed for desorption in the two sludge samples

n.a. = not applicable due to low mass balance and rapid transformation kinetics causing misleading results when used in equation 3.

|          |      |              |             | •                    |            |   |                              |              |             |              |              |
|----------|------|--------------|-------------|----------------------|------------|---|------------------------------|--------------|-------------|--------------|--------------|
|          |      | WW           | /TP-A (     | log K <sub>d</sub> ) |            | _ | WWTP-B (log K <sub>d</sub> ) |              |             |              |              |
| Compound | Sor. | Des.<br>24 h | Des.<br>48h | Des.<br>72 h         | Trend      | - | Sor.                         | Des.<br>24 h | Des.<br>48h | Des.<br>72 h | Trend        |
| CAF      | 0.8  | 1            | 1.1         | 0.9                  | *          |   | 0.9                          | 1.3          | 1.4         | 1.6          | $\uparrow$   |
| SMX      | 0.8  | 1.1          | 1.5         | 2.1                  | $\uparrow$ |   | -0.1                         | 1.2          | 1.8         | 2.4          | $\uparrow$   |
| DEA      | 1.0  | 0.7          | -0.5        | 0.7                  | ~          |   | 1.0                          | 0.9          | 1.4         | 2            | $\uparrow$   |
| CBZ      | 1.4  | 1.3          | 1.3         | 1.4                  | ~          |   | 0.5                          | 1.2          | 1.3         | 1.4          | $\uparrow$   |
| ATZ      | -0.3 | 1.1          | 0.9         | 0.4                  | ~          |   | 0.1                          | 1.4          | 1.5         | 1.7          | $\uparrow$   |
| E2       | 2.1  | 2.3          | 1.5         | 2                    | ~          |   | 1.9                          | 2.3          | 2           | 1.6          | $\checkmark$ |
| EE2      | 2.4  | 2.1          | 2           | 2                    | ~          |   | 2.3                          | 1.9          | 1.9         | 1.6          | $\checkmark$ |
| NOR      | 1.8  | 2.9          | 3.3         | 3.6                  | $\uparrow$ |   | 1.6                          | 1.8          | 2.3         | 3.1          | $\uparrow$   |
| DCF      | 1.7  | 2.8          | 3           | 3.2                  | $\uparrow$ |   | 1.8                          | 1.8          | 1.8         | 2.1          | $\uparrow$   |

**Table S27.** Solid water distribution coefficients of selected compounds in WWTP-A and WWTP-Bsamples with depletion in the samples as a function of rinsing step and time

## **S8.** Literature Review of Sludge K<sub>d</sub> and K<sub>OC</sub> values

Table S28. Literature review of  $K_d$  and  $K_{oc}$  previously reported

| Compound | K₀ (L | ./kg)  | Koc (I | _/kg)  | Poplicatos | foc | Sludge name / comments                           | Poforonco |
|----------|-------|--------|--------|--------|------------|-----|--------------------------------------------------|-----------|
| compound | value | (s.d.) | value  | (s.d.) | Replicates | (%) | Siddge name / comments                           | Nererence |
| ATZ      |       |        | 46     | 14     |            |     |                                                  | 2         |
| ATZ      | 100   |        |        |        |            |     |                                                  | 3         |
| ATZ      | 60    | 2      | 132    |        |            |     |                                                  | 4         |
| ATZ      | 122   | 24     | 245    |        |            |     |                                                  | 4         |
| ATZ      | 6     |        | 61     |        |            | 9.2 | Ah                                               | 5         |
| ATZ      | 7     |        | 68     |        |            | 9.9 | Cg                                               | 5         |
| ATZ      | 7     |        | 62     |        |            | 12  | Cr                                               | 5         |
|          |       |        |        |        |            |     |                                                  |           |
| CAF      | 25    |        |        |        |            |     | min thickened sludge, influenced by degradation? | 6         |
| CAF      | 100   |        |        |        |            |     | max thickened sludge, influenced by degradation? | 6         |
| CAF      | 126   |        |        |        |            |     | min digested sludge, influenced by degradation?  | 6         |
| CAF      | 1259  |        |        |        |            |     | max digested sludge, influenced by degradation?  | 6         |
| CAF      | 32    |        |        |        |            |     | cited in Narumiya etal                           | 7         |
| CAF      | 79    |        |        |        |            |     | cited in Narumiya etal                           | 7         |
| CAF      | <30   |        |        |        |            |     | Denver Metro Activated Sludge                    | 4         |
| CAF      | <30   |        |        |        |            |     | Denver Metro Primary Sludge                      | 4         |
| CAF      | <30   |        |        |        |            |     | Mines Park Activated sludge                      | 4         |
| CAF      | 8     |        |        |        |            |     | primary sludge                                   | 8         |
| CAF      | 398   |        |        |        |            |     | excess sludge (from figure 7 of reference)       | 8         |

| Compound | K₀ (L | /kg)   | Koc ( | L/kg)  | Poplicator | foc        | Sludgo nomo / commonte | Poforonco |
|----------|-------|--------|-------|--------|------------|------------|------------------------|-----------|
| Compound | value | (s.d.) | value | (s.d.) | Replicates | (%)        | Sludge name / comments | Reference |
| CBZ      | 35    |        | 154   |        |            | 18 - 28    | no pre-treatment       | 9         |
| CBZ      | 63    |        | 363   |        |            | 11 - 23.8  | alkaline               | 9         |
| CBZ      | 40    |        | 174   |        |            | 19.6 -26.2 | thermal                | 9         |
| CBZ      | 56    | 11     | 193   |        |            | 29.2       | ozone                  | 9         |
| CBZ      | 89    | 7      | 186   |        | 4          | 44.1       |                        | 10        |
| CBZ      | 237   | 79     |       |        |            |            |                        | 11        |
| CBZ      | 50    |        |       |        |            |            | min thickened sludge   | 6         |
| CBZ      | 100   |        |       |        |            |            | max thickened sludge   | 6         |
| CBZ      | 40    |        |       |        |            |            | min digested sludge    | 6         |
| CBZ      | 100   |        |       |        |            |            | max digested sludge    | 6         |
| CBZ      | 314   | 205    |       |        | 7          |            | primary sludge         | 12        |
| CBZ      | 135   | 39     |       |        | 7          |            | second act.            | 12        |
| CBZ      | 194   | 94     |       |        | 7          |            | FS MBR                 | 12        |
| CBZ      | 164   | 49     |       |        | 7          |            | HF MBR                 | 12        |
| CBZ      | 50    | 1      | 112   |        |            |            |                        | 4         |
| CBZ      | 65    | 5      | 129   |        |            |            |                        | 4         |
| CBZ      | 36    | 2      | 79    |        |            |            |                        | 4         |
| CBZ      | 1     |        |       |        |            |            |                        | 13        |
| CBZ      | 1     | 1      | 4     | 2      | 4-6        |            | secondary sludge       | 14        |
| CBZ      | 17    | 1      | 68    | 4      |            | 25         |                        | 15        |
|          |       |        |       |        |            |            | r                      |           |
| DCF      | 66    | 23     | 285   |        |            | 18 - 28    | no pre-treatment       | 9         |
| DCF      | 42    | 21     | 240   |        |            | 11 - 23.8  | alkaline               | 9         |
| DCF      | 37    | 12     | 161   |        |            | 19.6-26.2  | thermal                | 9         |
| DCF      | 151   | 16     | 347   |        | 6          |            |                        | 10        |
| DCF      | 200   |        |       |        |            |            | min thickened sludge   | 6         |
| DCF      | 1259  |        |       |        |            |            | max thickened sludge   | 6         |
| DCF      | 79    |        |       |        |            |            | min digested sludge    | 6         |
| DCF      | 158   |        |       |        |            |            | max digested sludge    | 6         |
| DCF      | 100   |        |       |        |            |            | cited in Narumiya etal | 7         |
| DCF      | 316   |        |       |        |            |            | cited in Narumiya etal | 7         |
| DCF      | 194   | 134    |       |        | 7          |            | primary sludge         | 12        |
| DCF      | 118   | 95     |       |        | 7          |            | second act.            | 12        |
| DCF      | 197   | 255    |       |        | 7          |            | FS MBR                 | 12        |
| DCF      | 321   | 402    |       |        | 7          |            | HF MBR                 | 12        |
| DCF      | 16    |        |       |        |            |            |                        | 13        |
| DCF      | 459   | 32     | 1310  | 180    | 4-6        |            | primary sludge         | 14        |
| DCF      | 16    | 3      | 47    | 32     | 4-6        |            | secondary sludge       | 14        |

| Compound | K⊳ (  | L/kg)  | Koc (l | ./kg)  | Renlicates | foc       | Sludge name / comments                                                        | Reference |
|----------|-------|--------|--------|--------|------------|-----------|-------------------------------------------------------------------------------|-----------|
| compound | value | (s.d.) | value  | (s.d.) | Replicates | (%)       | Sludge hame / comments                                                        | Kererence |
| E2       | 476   | 192    | 1738   |        | 9          |           | K <sub>f</sub> units l <sup>n</sup> ng <sup>(1-n)</sup> kg <sup>-1</sup>      | 16        |
| E2       | 461   | 212    | 2004   |        |            | 18 - 28   | no pre-treatment                                                              | 9         |
| E2       | 200   |        | 685    |        |            | 29.2      | ozone                                                                         | 9         |
| E2       | 229   |        |        |        | 4          |           | Primary (mean)                                                                | 17        |
| E2       | 151   |        |        |        | 4          |           | WAS (mean)                                                                    | 17        |
| E2       | 17    |        |        |        | 1          |           | drum thickener (BNR)                                                          | 17        |
| E2       | 692   |        | 1995   |        |            |           | K <sub>f</sub> units mg <sup>(1-1/n)</sup> L <sup>(1/n)</sup> g <sup>-1</sup> | 18        |
| E2       | 183   | 12     |        |        |            |           |                                                                               | 19        |
| E2       | 604   |        |        |        |            |           | 15 °C                                                                         | 20        |
| E2       | 487   |        |        |        |            |           | 25 °C                                                                         | 20        |
| E2       | 312   |        |        |        |            |           | 35 ℃                                                                          | 20        |
| E2       | 245   |        |        |        |            |           | 45 °C                                                                         | 20        |
| E2       | 458   | 20     | 1549   | 32     | 6          | 29.7      |                                                                               | 21        |
| E2       | 154   | 309    |        |        |            |           |                                                                               | 22        |
| E2       | 230   |        |        |        |            |           | Secondary sludge, long sludge                                                 | 23        |
| E2       | 771   | 108    | 1698   |        |            |           |                                                                               | 4         |
| E2       | 560   | 67     | 1122   |        |            |           |                                                                               | 4         |
| E2       | 522   | 34     | 1175   |        |            |           |                                                                               | 4         |
| E2       | 631   | 60     |        |        |            |           |                                                                               | 13        |
| E2       | 403   | 69     |        |        | 3          |           | activated sludge 20 °C                                                        | 24        |
| E2       | 485   | 50     |        |        |            |           | activated sludge 10 °C                                                        | 23        |
| E2       | 350   | 76     |        |        |            |           | activated sludge 30 °C                                                        | 23        |
| E2       | 698   | 17     |        |        |            |           | 10 days anaerobic unit                                                        | 25        |
| E2       | 529   | 13     |        |        |            |           | 10 days anoxic unit                                                           | 24        |
| EE2      | 584   | 136    | 2089   |        | 9          |           | Kf units I'' ng <sup>(1-n)</sup> kg <sup>-1</sup>                             | 16        |
| EE2      | 432   | 168    | 1878   |        |            | 18 - 28   | no pre-treatment                                                              | 9         |
| EE2      | 387   | 84     | 2224   |        |            | 11 - 23.8 | alkaline                                                                      | 9         |
| EE2      | 200   |        | 685    |        |            | 29.2      | ozone                                                                         | 9         |
| EE2      | 4571  |        |        |        | 4          |           | primary (mean)                                                                | 1/        |
| EE2      | 5/5   |        |        |        | 4          |           | WAS (mean)                                                                    | 17        |
| EE2      | //6   |        |        |        | 1          |           | drum thickener (BNR)                                                          | 17        |
| EE2      | 692   |        | 2042   |        |            |           | $K_{f}$ units mg <sup>(1-1/1)</sup> L <sup>(1/1)</sup> g <sup>-1</sup>        | 18        |
| EE2      | 281   | 22     |        |        |            |           |                                                                               | 19        |
| EE2      | 631   |        |        |        |            |           | 15 °C                                                                         | 20        |
| EE2      | 508   |        |        |        |            |           | 25 °C                                                                         | 20        |
| EE2      | 337   |        |        |        |            |           | 35 °C                                                                         | 20        |
| EE2      | 267   |        |        |        |            |           | 45 °C                                                                         | 20        |
| EE2      | 582   | 1      | 1827   | 1      | 6          | 29.7      |                                                                               | 21        |
| EE2      | 575   | 1085   |        |        |            |           |                                                                               | 22        |

| Compound | K₀ (I | L/kg)  | Koc (I | _/kg)  | Replicates | foc        | Sludge name / comments         | Reference |
|----------|-------|--------|--------|--------|------------|------------|--------------------------------|-----------|
| compound | value | (s.d.) | value  | (s.d.) | Replicates | (%)        |                                | hererenee |
| EE2      | 1550  | 223    | 3467   |        |            |            |                                | 4         |
| EE2      | 1017  | 105    | 2042   |        |            |            |                                | 4         |
| EE2      | 1103  | 76     | 2455   |        |            |            |                                | 4         |
| EE2      | 316   |        |        |        |            |            |                                | 13        |
| EE2      | 278   | 3      | 794    | 95     | 4-6        |            | primary sludge                 | 14        |
| EE2      | 349   | 37     | 860    | 140    | 4-6        |            | secondary sludge               | 14        |
| EE2      | 3236  |        |        |        |            |            | MBR 22 °C in time series       | 26        |
| EE2      | 2818  |        |        |        |            |            | MBR 24 °C in time series       | 25        |
| EE2      | 1622  |        |        |        |            |            | SBR 22 °C in time series       | 25        |
| EE2      | 1479  |        |        |        |            |            | SBR 24 °C in time series       | 25        |
| EE2      | 2951  |        |        |        |            |            | adsorption MBR                 | 27        |
| EE2      | 3631  |        |        |        |            |            | desorption MBR                 | 26        |
| EE2      | 2089  |        |        |        |            |            | adsorption CBR                 | 26        |
| EE2      | 4074  |        |        |        |            |            | desorption CBR                 | 26        |
| EE2      | 741   | 9      |        |        |            |            | 10 days anaerobic unit         | 24        |
| EE2      | 623   | 6      |        |        |            |            | 10 days anoxic Unit            | 24        |
| EE2      | 613   | 4      |        |        |            |            | 10 days oxic Unit              | 24        |
| EE2      | 2595  |        |        |        |            |            | primary sludge adsorption      | 28        |
| EE2      | 2824  |        |        |        |            |            | primary sludge desorption      | 27        |
| EE2      | 1979  |        |        |        |            |            | anaerobic sludge absorption    | 27        |
| EE2      | 2499  |        |        |        |            |            | anaerobic sludge desorption    | 27        |
|          |       |        |        |        |            |            |                                |           |
| SMX      | 23    |        | 100    |        |            | 18 - 28    | no pre-treatment               | 9         |
| SMX      | 62    |        | 353    |        |            | 11 - 23.8  | alkaline                       | 9         |
| SMX      | 10    |        | 42     |        |            | 19.6 -26.2 | thermal                        | 9         |
| SMX      | 256   | 169    |        |        | 9-15       |            |                                | 29        |
| SMX      | 114   |        |        |        | 1          |            |                                | 28        |
| SMX      | 400   |        |        |        | 1          |            |                                | 28        |
| SMX      | 269   | 43     | 617    |        | 6          | 44.1       |                                | 10        |
| SMX      | 400   | 2      |        |        |            |            | primary sludge                 | 30        |
| SMX      | 260   | 2      |        |        |            |            | standard WTP sludge            | 29        |
| SMX      | 260   | 2      |        |        |            |            | membrane bioreactor sludge     | 29        |
| SMX      | 63    |        |        |        |            |            | min thickened sludge           | 6         |
| SMX      | 398   |        |        |        |            |            | max thickened sludge           | 6         |
| SMX      | 3     | 5      |        |        | 7          |            | primary sludge                 | 12        |
| SMX      | 77    | 70     |        |        | 7          |            | second activation              | 12        |
| SMX      | 60    | 49     |        |        | 7          |            | FS MBR                         | 12        |
| SMX      | 63    | 42     |        |        | 7          |            | HF MBR                         | 12        |
| SMX      | 320   |        |        |        |            |            | primary sludge                 | 23        |
| SMX      | 370   |        |        |        |            |            | secondary sludge, short sludge | 23        |

| Compound | K₀ (L/kg)                 |            | Koc (L/kg) |                        | Renlicates | foc | Sludge name / comments              | Reference |
|----------|---------------------------|------------|------------|------------------------|------------|-----|-------------------------------------|-----------|
| compound | value (s.d.) value (s.d.) | Replicates | (%)        | Sludge name / comments | Neierence  |     |                                     |           |
| SMX      | 370                       |            |            |                        |            |     | secondary sludge, long sludge       | 23        |
| SMX      | 29                        | 2          | 38         | 3                      |            |     | adsorption                          | 31        |
| SMX      | 47                        |            |            |                        |            |     | desorption (NaN <sub>2</sub> dosed) | 30        |
| SMX      | 32                        | 1          | 62         | 1                      |            |     | sorption                            | 32        |
| SMX      | 44                        |            |            |                        |            |     | desorption                          | 31        |
| SMX      | <30                       |            |            |                        |            |     | Denver Metro AS                     | 4         |
| SMX      | <30                       |            |            |                        |            |     | Denver Metro Primary                | 4         |
| SMX      | <30                       |            |            |                        |            |     | Mines Park AS                       | 4         |



**Figure S19.** Comparison of average literature log  $K_{oc}$  values and standard deviations (error bars) and those measured in this study for the test analytes. For caffeine and norethindrone, no log  $K_{oc}$  values in the literature could be found. The largest significant discrepancy is for sulfamethoxazole, which is due to  $K_{oc}$  data being available largely from the most sorbing of sludges. The consistently smaller  $K_{oc}$  for a alum sludges is a preliminarly indication that the OC content may not be the only reason alum sludges sorb less.

### **S9.** References

1. OECD, OECD Guidelines for the Testing of Chemicals, Test Guideline 106: Adsorption - Desorption Using a Batch Equilibrium Method, Éditions OECD, Paris, p. 1–44, 2000.

2. W. Kördel, D. Hennecke and C. Franke, *Chemosphere*, 1997, **35**, 107-119.

3. H. Monteith, W. Parker, J. Bell and H. Melcer, *Water environment research*, 1995, **67**, 964-970.

4. J. Stevens-Garmon, J. E. Drewes, S. J. Khan, J. A. McDonald and E. R. Dickenson, *Water Research*, 2011, **45**, 3417-3426.

5. Q. Wu, H. P. Blume, L. Rexilius, M. Fölschow and U. Schleuss, *European journal of soil science*, 2000, **51**, 335-344.

6. M. Narumiya, N. Nakada, N. Yamashita and H. Tanaka, *Journal of Hazardous Materials*, 2013.

7. W. Xue, C. Wu, K. Xiao, X. Huang, H. Zhou, H. Tsuno and H. Tanaka, *Water Research*, 2010, **44**, 5999-6010.

8. T. Okuda, N. Yamashita, H. Tanaka, H. Matsukawa and K. Tanabe, *Environment International*, 2009, **35**, 815-820.

9. M. Carballa, G. Fink, F. Omil, J. M. Lema and T. Ternes, *Water Research*, 2008, **42**, 287-295.

10. K. C. Hyland, E. R. Dickenson, J. E. Drewes and C. P. Higgins, *Water Res*, 2012, **46**, 1958-1968.

11. A. Lajeunesse, S. Smyth, K. Barclay, S. Sauvé and C. Gagnon, *Water research*, 2012.

12. J. Radjenović, M. Petrović and D. Barceló, *Water Research*, 2009, **43**, 831-841.

13. S. Suarez, J. M. Lema and F. Omil, *water research*, 2010, 44, 3214-3224.

14. T. A. Ternes, N. Herrmann, M. Bonerz, T. Knacker, H. Siegrist and A. Joss, *Water Research*, 2004, **38**, 4075-4084.

15. A. Wick, G. Fink, A. Joss, H. Siegrist and T. A. Ternes, *Water research*, 2009, **43**, 1060-1074.

16. H. R. Andersen, M. Hansen, J. Kjølholt, F. Stuer-Lauridsen, T. Ternes and B. Halling-Sørensen, *Chemosphere*, 2005, **61**, 139-146.

17. T. Chiu, Y. Koh, N. Paterakis, A. Boobis, E. Cartmell, K. Richards, J. Lester and M. Scrimshaw, *Journal of Chromatography A*, 2009, **1216**, 4923-4926.

18. M. Clara, B. Strenn, E. Saracevic and N. Kreuzinger, *Chemosphere*, 2004, **56**, 843-851.

19. R. L. Gomes, M. D. Scrimshaw, E. Cartmell and J. N. Lester, *Environmental monitoring and assessment*, 2011, **175**, 431-441.

20. A. Ifelebuegu, S. Theophilus and M. Bateman, *International Journal of Environmental Science and Technology*, 2010, **7**, 617-622.

21. A. Ifelebuegu, Int J Environ Sci Tech, 2011, **8**, 245-254.

22. Y. K. Koh, T. Y. Chiu, A. R. Boobis, M. D. Scrimshaw, J. P. Bagnall, A. Soares, S. Pollard, E. Cartmell and J. N. Lester, *Environmental science & technology*, 2009, **43**, 6646-6654.

23. M. Hörsing, A. Ledin, R. Grabic, J. Fick, M. Tysklind, J. I. C. Jansen and H. R. Andersen, *Water Research*, 2011, **45**, 4470-4482.

24. Q. Zeng, Y. Li, G. Gu, J. Zhao, C. Zhang and J. Luan, *Environmental Engineering Science*, 2009, **26**, 783-790.

25. Q. Zeng, Y. Li and S. Yang, *Environmental engineering science*, 2013, **30**, 161-169.

26. K. Xu, W. F. Harper Jr and D. Zhao, *Water research*, 2008, **42**, 3146-3152.

27. T. Yi and W. F. Harper Jr, *Water research*, 2007, **41**, 1543-1553.

28. Z. Zhang, Y. Feng, P. Gao, J. Liu and N. Ren, *International Journal of Environmental Science and Technology*, 2012, **9**, 247-256.

29. A. Göbel, A. Thomsen, C. S. McArdell, A. Joss and W. Giger, *Environmental Science and Technology*, 2005, **39**, 3981-3989.

30. A. Joss, E. Keller, A. C. Alder, A. Göbel, C. S. McArdell, T. Ternes and H. Siegrist, *Water research*, 2005, **39**, 3139-3152.

31. S.-F. Yang, C.-F. Lin, A. Yu-Chen Lin and P.-K. Andy Hong, *Water Research*, 2011, **45**, 3389-3397.

32. T.-H. Yu, A. Y.-C. Lin, S. C. Panchangam, P.-K. A. Hong, P.-Y. Yang and C.-F. Lin, *Chemosphere*, 2011, **84**, 1216-1222.