Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2014

Supporting Informations

For

Reductive Immobilization of Uranium by PAAM-FeS/Fe₃O₄ Magnetic Composites

Dadong Shao^a, Xiangxue Wang^a, Jiaxing Li^{a*}, Yongshun Huang^a, Xuemei Ren^a, Guangshun Hou^b,

Xiangke Wang^{a,c}

^a Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, 230031 Hefei, P. R. China.

^b School of Surveying and Land Information Engineering, Henan Polytechnic University.

^c School for Radiological and interdisciplinary Sciences, Soochow University

D.D. Shao: shaodadong@126.com

- X.X. Wang: Xiangxuewang_1975@163.com
- J.X. Li: lijx@ipp.ac.cn

Y.S. Huang: hyshun.pig@gmail.com

- X.M. Ren: renxm1985@163.com
- G.S. Hou: houguangshun@163.com
- X.K. Wang: xkwang@ipp.ac.cn

Figure SI-1. Magnetization curve and magnetic separation of PAAM–FeS/Fe₃O₄. PAAM–FeS/Fe₃O₄ particles can be separated from aqueous solution easily with a simple magnet.

Figure SI-2. Effect of PAAM–FeS/Fe₃O₄ content on U(VI) enrichment. T = 20 ± 1 °C, contact time: 48 h, C[U(VI)]_(initial) = 50.0 mg · L⁻¹, C[NaCl] = 0.10 mol · L⁻¹, pH= 5.0 ± 0.1 .

Adsorbent	Experimental conditions	C_{smax} (mg/g)	References
Carbon nanotubes	pH = 5.0, T = 25 °C	26.2	1
$K_2MnSn_2S_6$	pH = 3.5, T = 25 °C	382	2
Hematite	$pH = 5.5, T = 25 \circ C$	5.59	3
Akaganeite	$pH = 6.0, T = 30 \circ C$	90.4	4
Magnetic Fe ₃ O ₄ @SiO ₂	pH = 6.0, T = 25 °C	52	5
MnO ₂ coated zeolite	pH = 6.0, T = 20 °C	17.6	6
Amidoximated hydrogel	pH = 3.0, T = 25 °C	39.5	7
Modified carbon CMK-3	pH = 4.0, T = 20 °C	75	8
Graphene oxide nanosheets	$pH = 5.0, T = 20 \circ C$	97.5	9
Quercetin modified Fe ₃ O ₄	pH = 3.7, T = 25 °C	12.3	10
PAAM-FeS/Fe ₃ O ₄	pH = 5.0, T = 20 °C	311	This work

Table SI-1. Comparison of U(VI) sorption capacity of PAAM-FeS/Fe₃O₄ with other adsorbents.

References

- [1] D. Shao, Z. Jiang, X. Wang, J. Li and Y. Meng, J. Phys. Chem. B 2009, 113, 860-864.
- [2] M. J. Manos and M. G. Kanatzidis, J. Am. Chem. Soc. 2012, 134, 16441–16446.
- [3] D. Zhao, X. Wang, S. Yang, Z. Guo and G. Sheng, J. Environ. Radioact. 2012, 103, 20-29.
- [4] S. D. Yusan and S. Akyil, J. Hazard. Mater. 2008, 160, 388-395.
- [5] F. L. Fan, Z. Qin, J. Bai, W. D. Rong, F. Y. Fan, W. Tian, X. L. Wu, Y. Wang and L. Zhao, J. Environ. Radioact. 2012, 106, 40-46.
- [6] R. P. Han, W. H. Zou, Y. Wang and L. Zhu, J. Environ. Radioact. 2007, 93, 127-143.
- [7] N. Seko, A. Katakai, M. Tamada, T. Sugo and F. Yoshii, Sep. Sci. Technol. 2004, 39, 3753-3767.
- [8] J. H. Kim, H. I. Lee, J. W. Yeon, Y. Jung, J. M. Kim, J. Radioanal. Nuclear Chem. 2010, 286, 129–133.
- [9] G. Zhao, T. Wen, X. Yang, S. Yang, J. Liao, J. Hu, D. Shao and X. Wang, *Dalton Trans. 2012*, 41, 6182–6188.
- [10] S. Sadeghi, H. Azhdari, H. Arabi and A. Z. Moghaddam, J. Hazard. Mater. 2012, 215–216, 208–216.