Steric Effects for Proton, Hydrogen-Atom, and Hydride Transfer Reactions with Geometric Isomers of NADH-Model Ruthenium Complexes

Brian W. Cohen,[†] Dmitry E. Polyansky,^{*,†} Patrick Achord,[†] Diane Cabelli,[†] James T. Muckerman,[†] Koji Tanaka,[§] Randolph P. Thummel,[‡] Ruifa Zong,[‡] and Etsuko Fujita^{*,†}

[†] Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

[§] Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan

[‡]Department of Chemistry, University of Houston, Houston TX 77204-5003, USA

Supporting Information

Figure S1. Cyclic voltammogram of $[\mathbf{Ru}(2)]^{2+}$ in CH₃CN versus SCE.

Assignments of the absorption bands of $[\mathbf{Ru}(2)]^{2+}$

Peak	Percent	Transition	
528 nm (2.3 eV)	0.2	$HOMO-2 \rightarrow LUMO$	MLCT
	0.21	$HOMO-1 \rightarrow LUMO$	MLCT
436 nm (2.8 eV)	0.35	$HOMO-2 \rightarrow LUMO+1$	MLCT
,	0.08	HOMO-1 \rightarrow LUMO+2	MLCT
355 nm (3.5 eV)	0.08	$HOMO-4 \rightarrow LUMO$	$\pi \rightarrow \pi^*$
	0.12	$HOMO-2 \rightarrow LUMO+3$	MLCT
	0.15	$\text{HOMO-1} \rightarrow \text{LUMO+4}$	MLCT

LUMO+3 LUMO+4

Figure S2. Calculated spectrum, assignment of absorption bands and the frontier orbitals of $[\mathbf{Ru}(2)]^{2^+}$.

Figure S3. The bimolecular rate constant of quenching the excited state of $[\mathbf{Ru}(2)]^{2+}$ by DABCO in acetonitrile.

Figure S4. UV-vis-NIR absorption spectra of stepwise reduction of $[\mathbf{Ru}(2)]^{2+}$ (black) to $[\mathbf{Ru}(2^{-})]^{+}$ (green) by Na/Hg amalgam in CH₃CN.

Figure S5. UV-vis-NIR spectra of photochemical formation of $[\mathbf{Ru}(2^{-})]^{+}$ (red) from $[\mathbf{Ru}(2)]^{2+}$ (black) in CH₃CN/NEt₃. The blue spectrum measured after an addition of 10 eq. of HClO₄ to the $[\mathbf{Ru}(2^{-})]^{+}$ solution indicates formation of a 1:1 mixture of $[\mathbf{Ru}(2)]^{2+}$ and $[\mathbf{Ru}(2\text{HH})]^{2+}$.

Figure S6. Calculated structures of $[\mathbf{Ru}(2)]^{2+}$, $[\mathbf{Ru}(2^{-})]^{+}$, $[\mathbf{Ru}(2H^{+})]^{2+}$, $[\mathbf{Ru}(2HH)]^{2+}$, $[\mathbf{Ru}(2H)]^{3+}$ and a possible isomer of $[\mathbf{Ru}(2H)]_{2}^{4+}$. The red line indicates an internal hydrogen bond between the protonated N atom and a coordinated N of the bpy ligand.

Figure S7. Calculated Mulliken atomic spin densities in $[\mathbf{Ru}(2^{-})]^+$ and protonated $[\mathbf{Ru}(2\mathbf{H}^{+})]^{2+}$.

Figure S8. ¹H NMR spectra of $[\mathbf{Ru}(\mathbf{2}HH)]^{2+}$ photochemically (top) and chemically (bottom) produced in CD₃CN. Impurities due to photodecomposition are labeled (*).

Figure S9. Uncorrected emission spectra of $[\mathbf{Ru}(1)]^{2+}$ in CH₃CN (excitation at 528 nm) in the presence of different concentrations of H₂Q.

Figure S10. The plot of I_0/I vs. concentration of H_2Q , where I_0 is the emission intensity in the absence of H_2Q . The red line is the linear fit with the slope = 16.3 M⁻¹.

Figure S11. The bimolecular rate constant of reaction of H₂Q and D₂Q with $*[\mathbf{Ru}(\mathbf{1})]^{2+}$ in CH₃CN. Kinetic isotope effect (KIE) was found to be $k_{\rm H}/k_{\rm D} = 6.2$.

Figure S12. The bimolecular rate constant of reaction of $H_2Q(Bu^t)_2$ with $*[\mathbf{Ru}(\mathbf{1})]^{2+}$ in CH₃CN.

Figure S13. Observed rate of the formation of 626 nm band in the reaction between $[\mathbf{Ru}(\mathbf{1}\text{HH})]^{2+}$ and the excess of triphenyl carbenium cation in acetonitrile plotted vs. concentration of $[\text{Ph}_3\text{C}]^+$. The rate constant obtained from the linear fit was $1.5 \times 10^{-2} \text{ M}^{-1} \text{ s}^{-1}$.

Figure S14. UV-vis spectra of the product of the reaction between $[Ru(1HH)]^{2+}$ and $[Ph_3C]^+$ in methylene chloride (black); $[Ru(1H)]^{3+}$ in water pH = 1.

Figure S15. UV-vis spectra of the product of the reaction between $[\mathbf{Ru}(\mathbf{1}HH)]^{2+}$ and $[\mathbf{Ph}_{3}C]^{+}$ in methylene chloride after addition of triethylamine (black); $[\mathbf{Ru}(\mathbf{1})]^{2+}$ in water pH = 7.

Figure S16. ¹H NMR of reaction mixture of $[\mathbf{Ru}(\mathbf{2}\text{HH})]^{2+}$ and $[\text{Ph}_3\text{C}]^+$ in CD₃CN, showing the formation of Ph₃CH (5.6 ppm) in a 1:1 ratio with $[\mathbf{Ru}(\mathbf{2})]^{2+}$. Characteristic peaks are integrated at 5.6 for Ph₃CH and 9.07, 8.84-8.80, and 6.78 ppm for $[\mathbf{Ru}(\mathbf{2})]^{2+}$.

Figure S17. UV-vis spectra of $[\mathbf{Ru}(2)]^{2+}$ before (red) and after (black) photochemical reduction, hydride donation, and purification in CH₃CN.

Figure S18. ¹H NMR of $[\mathbf{Ru}(2)]^{2+}$ starting material (bottom) and after photochemical reduction, hydride donation, and purification (top) in CD₃CN.

Figure S19. The bimolecular rate constant of hydride donation from $[\mathbf{Ru}(2HH)]^{2+}$ to $[Ph_3C]^+$ in CH₃CN.

	$[Ru(2)]^{2+}$	$[\mathbf{Ru}(2^{-})]^{+}$	$[\mathbf{Ru}(2\mathrm{H}^{\bullet})]^{2+}$	$\left[\mathbf{Ru}(2\mathrm{H})\right]^{3+}$	$\left[\mathbf{Ru}(2\mathrm{HH})\right]^{2+}$
Ru–N pyridyl	2.085	2.094	2.091	2.081	2.088
Ru–N pbn	2.157	2.141	2.166	2.159	2.171
Ru–N _{bpy1} (tr)	2.101	2.091	2.122	2.126	2.118
Ru–N bpy1	2.095	2.083	2.096	2.101	2.095
Ru–N $_{bpy2}$ (tr)	2.089	2.092	2.090	2.085	2.088
Ru–N bpy2	2.092	2.081	2.091	2.096	2.090
С9–Н	1.092	1.089	1.087	1.088	1.097, 1.102
N10-H	n/a	n/a	1.016	1.021	1.009
C5–C12	1.407	1.424	1.430	1.398	1.513
C12–C13	1.453	1.445	1.431	1.436	1.402
C13-N10	1.369	1.382	1.404	1.370	1.409
C9–C12	1.407	1.398	1.409	1.405	1.514
C11–C12	1.453	1.467	1.449	1.427	1.420
C11-N10	1.347	1.350	1.375	1.354	1.366
N1-C11-C12-C9	179.97	179.99	179.44	179.69	176.82
N _{bpy} …H	n/a	n/a	2.069	2.036	2.083
N10–N _{bpy}	n/a	n/a	3.047	3.035	3.066
N10–H…N bpy	n/a	n/a	163.9	165.5	163.9

Table S1. Computed Geometrical Parameters of Ru(2) Species.

