

Supplemental Figure 1. Effects of 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone (5-OH-HxMF) and 3,5,6,7,8,3',4'-heptamethoxyflavone (HpMF) on the cell viabilities of THP-1-derived macrophages and HepG2 cells. (A) THP-1-derived macrophages were treated with the indicated concentration of agent for 48 h and cell viability was analyzed by MTT as described in Materials and Methods. (B) HepG2 cells were cultured in 6-well plates until 80% confluent, and then changed to LPDS-containing medium for overnight. Cells were then treated with the indicated compound or control vehicle (0.1% v/v DMSO) for 48 h and cell viability was analyzed by MTT as described in Materials and Cell viability was analyzed by MTT as

Supplemental Figure 2. Effects of 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone (5-OH-HxMF) and 3,5,6,7,8,3',4'-heptamethoxyflavone (HpMF) on the expression of DGAT2 in HepG2 cells. HepG2 cells were cultured in 6-well plates until 80% confluent, and then changed to LPDS-containing medium for overnight. Cells were then treated with the indicated compound or control vehicle (0.1% v/v DMSO) for 24 h. Total cellular RNA was prepared and the expression of DGAT2 was analyzed, as described in the Materials and methods section. Data represent the mean \pm SD of three independent experiments relative to the value of vehicle control. **p*<0.05 and***p*<0.01 represent significant differences compared with the vehicle control.

Supplemental Table 1. Effects of nobiletin (NOB), 5-demethylnobiletin (5-demethyl NOB), 3',4'-didemethylnobiletin (DTF), 5-hydroxy-3,6,7,8,3',4'- hexamethoxyflavone (5-OH-HxMF) and 3,5,6,7,8,3',4'-heptamethoxyflavone (HpMF) on DiI-oxLDL uptake activity and mRNA expression of CD36 and SR-A in THP-1-derived macrophages ^a.

Citrus PMF	DiI-oxLDL	oxLDL-induced	oxLDL-induced
	uptake (%)	CD36 (%) ^a	SR-A (%)
NOB			
10 µM	93.3 ± 10.2^{1}	N/A	N/A
20 µM	$61.8 \pm 2.3^{**1}$	N/A	N/A
5-demethyl NOB			
10 µM	$74.4 \pm 1.2^{**2}$	$42.6\pm 0.4^{**2}$	$60.5\pm 2.4^{**2}$
20 µM	$62.7\pm 0.9^{**2}$	$53.4 \pm 9.2^{**2}$	$70.2 \pm 9.3^{**2}$
DTF			
10 µM	$61.8 \pm 2.2^{**1}$	N/A	N/A
20 µM	$36.9 \pm 1.5^{**1}$	$61.2\pm5.7^{*}$	$38.4\pm7.9^{*}$
5-OH-HxMF			
10 µM	$67.4\pm7.5^{*}$	$82.2\pm3.5^*$	$87.3 \pm 3.4^{*}$
20 µM	$60.1{\pm}~6.1^*$	$82.1\pm3.0^{*}$	$89.4 \pm 4.1^{*}$
HpMF			
10 µM	$74.6\pm9.4^{*}$	$85.6\pm5.2^*$	81.3 ± 20.2
20 µM	$70.5\pm3.2^*$	$88.8\pm5.8^*$	98.2 ± 9.0

^aData (mean \pm SD) are expressed as percentage of the vehicle control (n=3). *, *p*<0.05 and **, *p*<0.01 represent significant differences compared with the vehicle control in the presence of oxLDL.

- Y. H. Lo, M. H. Pan, S. Li, J. H. Yen, M. C. Kou, C. T. Ho and M. J. Wu, Biochim. Biophys. Acta, 2010, 1801, 114-126.
- J. H. Yen, C. Y. Weng, S. Li, Y. H. Lo, M. H. Pan, S. H. Fu, C. T. Ho and M. J. Wu, *Mol. Nutr. Food Res.*, 2011, 55, 733-748.