## Sulfonated polypyrrole nanospheres as a solid acid catalyst

## Xiaoning Tian<sup>a</sup>, Jianqiang Yu,<sup>b</sup> Fabing Su<sup>b</sup> and X. S. Zhao<sup>\*a</sup>

<sup>a</sup>Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576 E-mail: chezxs@nus.edu.sg; Fax: +65-67791936; Tel: +65-65164727

<sup>b</sup> Institute of Multifunctional Materials (IMM), Growing Base for State Key Laboratory of New Fiber Materials and Modern Textile, Qingdao University, P R China

<sup>c</sup> Applied Catalysis, Institute of Chemical and Engineering Sciences, 1Pesek Road, Jurong Island, Singapore 627833



Fig. S1. XRD patterns of (a) PNs, (b) SPNs(40), (c) SPNs(150), (d) SCPNs(400,40), (e) SCPNs(400,150), and (f) SCPNs(900, 150).

| Sample                                       | С      | N      | 0      | S      | Surface area |
|----------------------------------------------|--------|--------|--------|--------|--------------|
|                                              | (wt %) | (wt %) | (wt %) | (wt %) | $(m^2/g)$    |
| PNs                                          | 83.4   | 7.1    | 9.5    | 0      | 12.4         |
| SPNs(40)                                     | 81.0   | 3.2    | 13.9   | 1.9    | 9.5          |
| SPNs(40) after the $4^{th}$ run              | 81.3   | 4.2    | 13.0   | 1.6    | 16.9         |
| SPNs 55                                      | 73.0   | 7.3    | 15.6   | 4.1    | 13.5         |
| SPNs(55) after the 4 <sup>th</sup> run       | 81.9   | 4.1    | 12.5   | 1.5    | 13.7         |
| SPNs(70)                                     | 72.9   | 8.3    | 14.9   | 3.9    | 13.9         |
| SPNs(70) after the 4 <sup>th</sup> run       | 81.0   | 4.9    | 12.1   | 1.9    | 22.1         |
| SPNs(150)                                    | 81.3   | 3.8    | 13.0   | 1.8    | 12.9         |
| SPNs(150) after the 4 <sup>th</sup> run      | 82.7   | 3.9    | 13.1   | 0.3    | 16.9         |
| CPNs(400)                                    | 80.1   | 11.0   | 9.0    | 0      | 20.3         |
| SCPNs(400,40)                                | 78.7   | 5.8    | 13.0   | 2.5    | 10.6         |
| SCPNs(400,40) after the 4 <sup>th</sup> run  | 81.0   | 6.7    | 11.4   | 0.9    | 18.0         |
| SCPNs(400,150)                               | 78.4   | 6.8    | 14.0   | 0.9    | 27.6         |
| SCPNs(400,150) after the 4 <sup>th</sup> run | 81.4   | 5.4    | 13.2   | 0.1    | 20.9         |
| CPNs(900)                                    | 89.7   | 3.2    | 7.1    | 0      | 25.4         |
| SCPNs(900,150)                               | 86.9   | 4.0    | 8.2    | 0.9    | 22.4         |

Table S1. Surface compositions according to XPS analysis and surface areas of samples



Fig. S2. FTIR spectra of (A) SPNs(40), (B) SPNs(40) after the 4<sup>th</sup> reaction run, (C) SPNs(400,40), and (D) SPNs(400,40) after the 4<sup>th</sup> reaction run.



Fig. S3. TG curves of PNs in air (a) and nitrogen (b).