Novel ((3Z,5Z)-3,5-bis(phenylimino)-1,2-dithiolan-4-yl) and 3H-[1,2]dithiolo [3,4-*b*]quinolin-4(9H)-one heterocycles: an effective and facile green route

Fang Fang Jian,* Jian Zheng, Yu Feng Li, Jing Wang

^a Microscale Science Institute, Weifang University, Weifang 261061, P. R. China ^b New Materials & Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao, 266042, China.

ffj2003@163169.net

Supporting information

Table of contents	Page
1. General	S-1
2. Study on the effects of reaction condition for compounds 1	S-1 ~ S-3
3. Study on the effects of reaction condition for compounds 2	S-3 ~ S-4
4. The comparing result for solvent-free method and general me	ethod. S-5
5. Spectra data	S-6 ~ S-29
6. Crystallographic data for the compounds 1e	S-30 ~ S-31
7. Crystallographic data for the compounds 1h	S-31 ~ S-32
8. Crystallographic data for the compounds 1i	S-33~ S-34
9. Crystallographic data for the compounds 2e	S-34~ S-35
10. Drug Screening report	S-36~ S-37

1. General

The NMR spectra were recorded on 400M NMR spectrometer. In all cases CDCl₃ was used as solvent. Chemical Shifts are reported in *ppm* from tetramethylsilane with the solvent resonance as the internal standard (deuterochloroform: $\delta 7.27 \ ppm$). Data are reported as follows: chemical shifts, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constants (Hz). The C and H elemental analyses were performed on a Perkin-Elmer elemental analyzer. Infrared spectra were recorded using pressed KBr plates in the 4000-400 cm⁻¹ ranges. Crystals data were collected on four circle diffractometer with graphite monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å). Intensities were corrected for Lorentz and polarization effects and empirical absorption, and the data reduction was carried out using SADABS program. The structure was solved by direct methods using SHELXS-97. All the non-hydrogen atom positions were fixed geometrically at calculated distances and allowed to ride on the parent carbon atoms.

1-isothio-cyanatobenzene, a variety of 1-(substituted-phenyl)ethanone derivatives, organic solvent and other chemical reagents were obtained from commercial sources and used without further purification. The effects of reaction conditions introduced here were general method, not solvent-free synthesis route (2 and 3).

2. Study on the effects of reaction condition for ((3Z,5Z)-3,5-bis(phenylimino) -1,2-dithiolan-4-yl) derivatives 1

2-1 General Synthesis Process: To a 50 mL flask 0.01 mol of 1-(substituted-phenyl) ethanone derivatives in 20 mL of dioxane, 0.02 mol (1.12 g) of KOH was added with stirring at room temperature, then dropwise added 0.02 mol 1-isothio-cyanatobenzene dioxane solvent in three hours. The reaction was maintained six hours until the yellow precipitation was formed. The precipitation was filtered, washed with diethyl ether, dried in the air. The yellow single crystals suitable for X-ray measurements were obtained by recrystallized from mixture solvent (acetic ether : cyclohexane = 1 : 3). Compounds (1) are stable in the solid state and in any organic solvent. Compounds $1a \sim 1j$ were characterized by element analysis, IR, and ¹H NMR spectroscopy, and 1e, 1h and 1i were also characterized by X-ray diffraction.

2-2 The effects of solvents.

Table S1 The effects of solvent to the reaction

Solvent	Yield (%)	Solvent	Yield (%)
1,4-dioxine	91.5	cyclohexane	40.0
tetrahydrofuran	71.0	petroleum ether	25.9
ethyl ether	65.5	pyridine	45.8
ethanol	0	benzene	42.4
methanol	0	toluene	40.7
water	0	n-hexane	35.5
DMF	12.7	ethyl acetate	0

2-3 The effects of the Base.

Table S2 The effects of base to the reaction

entry	base	solvent	Tem. (°)	Time (h)	Yield%
1	КОН	Dioxane	r.t.	6	91.5
2	K_2CO_3	Dioxane	r.t.	6	0
3	Na ₂ CO ₃	Dioxane	r.t.	6	0
4	NaOH	Dioxane	r.t.	6	64.5
5	Na	Dioxane	r.t.	6	71.0
6	NaOEt	Dioxane	r.t.	5	0
7	N(Et) ₃	Dioxane	r.t.	6	0

2-4 The effects of the temperature.

Table S3 The effection of temperature to the reaction

entry	base	solvent	Tem. (°)	Time (h)	Yield%
1	КОН	Dioxane	-10	6	81.4
2	КОН	Dioxane	0	6	85.7
3	КОН	Dioxane	25	6	91.5
4	КОН	Dioxane	40.	6	86.3
5	КОН	Dioxane	70.	6	77.4
6	КОН	Dioxane	100	5	56.9

		J			L	5
Comp.	Formula	W	C/%	H/%	N/%	S/%
1 a	$C_{22}H_{15}ClN_2OS_2$	422.95	62.406(2.48)	3.55 (3.57)	6.59(6.62)	15.16(15.13)
1 b	$C_{22}H_{15}ClN_2OS_2$	422.95	62.55(62.55)	3.45 (3.58)	6.59(6.64)	15.19(15.13)
1c	C ₂₂ H ₁₅ BrN ₂ OS ₂	467.40	56.44(56.65)	3.21 (3.24)	6.22(6.01)	13.65 (13.69)
1d	$C_{22}H_{15}FN_2OS_2$	406.49	65.15(65.01)	3.70 (3.72)	6.88(6.90)	15.72 (15.74)
1e	$C_{22}H_{14}Cl_2N_2OS_2$	457.39	57.80(57.90)	3.00 (3.09)	6.14(6.12)	13.89 (13.99)
1f	$C_{22}H_{14}Cl_2N_2OS_2$	457.39	57.80(57.90)	3.00 (3.09)	6.15(6.12)	13.89 (13.99)
1g	$C_{22}H_{14}Cl_2N_2OS_2$	457.39	57.81(57.90)	2.99 (3.09)	6.15(6.12)	13.89 (13.99)
1h	$C_{22}H_{13}Cl_2FN_2OS_2$	475.38	55.65(55.70)	2.66 (2.76)	5.96(5.91)	13.40 (13.46)
1i	$C_{23}H_{17}BrN_2OS_2$	481.42	57.60(57.50)	3.55 (3.57)	5.94(5.83)	13.20 (13.29)
1j	$C_{21}H_{15}N_3OS_2$	389.45	64.66(64.77)	3.88 (3.89)	10.88(10.80)	16.40 (16.43)

2-5 The Element Analysis found for compounds (1)

Table S4 Element Analysis: Found (Calad) of compounds 1a-1j

3. Study on the effects of reaction condition for 3H-[1,2]dithiolo[3,4-*b*] quinolin-4(9H)-one 2

3-1 General Synthesis Process: As an example, the synthesis of (3Z)-7-chloro-9-phenyl-3-(phenylimino)-3H-[1,2]dithiolo [3,4-*b*]quinolin-4(9H)-one **2e** is given to illustrate the general procedure. To a 50 mL flask 0.01 mol of 1-(2,4-dichlorophenyl) ethanone in 20 mL of anhydrous dioxane, 0.04 mol (1.75 g) KOH and a little metal K was added with stirring, refluxing for 10 mins, then dropwise added 0.02 mol 1-isothio cyanatobenzene in three hours. The reaction was maintained six hours until the yellow precipitation was formed. The precipitation was filtered, washed with diethyl ether, dissolved in the water, added extra Ce(NO₃)₃ aquo with stirring. The yellow precipitation was formed, isolated by filteration. The yellow single crystals suitable for X-ray measurements were obtained by recrystallized from mixture solvent (acetic ether :

petroleum ether = 1 : 2). We have gotten five 3H-[1,2] dithiolo[3,4-*b*] quinolin-4(9H)-one. Five compounds **2a**, **2e**, **2f**, **2h** and **2i** were characterized by element analysis (See Table S7), IR, and ¹H NMR spectroscopy, and **2e** were also characterized by X-ray diffraction. **3-2 The effects of solvent**

solvent	Yield (%)	solvent	Yield(%)
1,4-dioxine	50.0	cyclohexane	13.1
tetrahydrofuran	41.2	petroleum ether	11.1
ethyl ether	35.6	pyridine	34.1
n-hexane	12.1	benzene	17.2
DMF	10.7	toluene	14.3

Table S5 the effects of solvent to the reaction

3-3 The effects of the catalyst

Table S6 the effects of catalyst to the reaction

catalyzer	Yield (%)	catalyst	Yield (%)
Ce(NO ₃) ₃	63.0	CuCl ₂	0
$Ce(NO_3)_4$	0	FeCl ₃	15
CeCl ₃	59.0	H_2O_2	0
GdCl ₃	56.3	$Pb(NO_3)_4$	0
NaNO ₃	4.6	air	4.3

3-4 The Element Analysis found for compound (2)

Table S7 Element Analysis: Found (Calad) of compounds 2a~2e

Comp	Formula	W	C/%	H/%	N/%	S/%
2a	$C_{22}H_{14}N_2OS_2$	386.49	68.31(68.37)	3.70 (3.65)	7.30 (7.25)	16.50(16.55)
2e	$C_{22}H_{13}CIN_2OS_2$	420.93	62.75 (62.78)	3.10 (3.11)	6.68 (6.66)	15.23(15.20)
2f	$C_{22}H_{13}CIN_2OS_2$	420.93	62.67 (62.78)	3.10 (3.11)	6.68 (6.66)	15.25(15.20)
2h	C ₂₂ FH ₁₂ ClN ₂ OS ₂	438.92	60.05 (60.20)	2.66 (2.76)	6.40 (6.38)	14.56(14.58)
2i	$C_{23}H_{16}N_2OS_2$	400.51	68.80 (68.97)	3.99 (4.03)	7.02 (6.99)	15.96(15.97)

4. The comparing result for solvent-free method and general method. Table S8 The comparing result.

Entry	Condition	solvent	Temp. (°C)	React. Time	Yield%
10	General	Dioxane	Room Temp.	6 hour	73.0
1a	Solvent-free	No	Room Temp.	10 minutes	96.0
-11	General	Dioxane	Room Temp.	6 hour	91.5
10	Solvent-free	No	Room Temp.	10 minutes	88.0
	General	Dioxane	Room Temp.	6 hour	73.5
le	Solvent-free	No	Room Temp.	15 minutes	68.0
	General	Dioxane	Room Temp.	6 hour	75.0
1f	Solvent-free	No	Room Temp.	15 minutes	65.0
	General	Dioxane	Room Temp.	6 hour	91.5
1j	Solvent-free	No	Room Temp.	15 minutes	86.0

5. Spectra data

5-1 Spectra data for ((3Z,5Z)-3,5-bis(phenylimino)-1,2-dithiolan-4-yl) derivatives 1

1a:

(2-chlorophenyl) ((3Z)-5-(phenylamino)-3-(phenylimino)-3H-1, 2-dithiol-4-yl) methan one

1b:

(4-chlorophenyl)((3Z)-5-(phenylamino)-3-(phenylimino)-3H-1,2-dithiol-4-yl)methan one

Yield: 91.5%. mp 148-150 °C; ¹H NMR (400Hz, CDCl₃): δ 10.794(s, 1H N-H); 8.257-6.223(m, 15H -C=C-H).; IR (v_{max} , cm⁻¹): 3443 (w, N-H); 1608 (s, -C=O); 1591(S, -C=N-); 1517 (s, N-H); 1212(m, S-C). EA (Anal. Calc. (%) for C₂₂H₁₅ClN₂OS₂):C 62.55 H 3.58 N 6.64 S 15.13; Found (%):C 62.55, H 3.45, N 6.59 S 15.19.

S-8

1c:

(4-bromophenyl)((3Z)-5-(phenylamino)-3-(phenylimino)-3H-1,2-dithiol-4-yl)methan one

Yield: 93%. mp 154-156°C; ¹H NMR (400Hz, CDCl₃): $\delta 10.781(s, 1H N-H)$; 8.217-6.223(m, 15H -C=C-H).IR(v_{max} , cm⁻¹): 3441(w, N-H); 1608(s, -C=O); 1590(S, -C=N-); 1515 (s, N-H); 1212(m, S-C). EA (Anal. Calc. (%) for $C_{22}H_{15}BrN_2OS_2$):C 56.65 H 3.24 N 6.01 S 13.69; Found (%):C 56.44, H 3.21,N 6.22 S 13.65.

S-10

S-11

1d:

(4-fluorophenyl)((3Z)-5-(phenylamino)-3-(phenylimino)-3H-1,2-dithiol-4-yl)methan one

Yield: 56%. mp 144-146°C; ¹H NMR (400Hz, CDCl₃): $\delta 10.829(s, 1H, N-H)$; 8.36-6.221(m,15H, -C=C-H). IR(v_{max} , cm⁻¹): 3448(w, N-H); 1615 (s, -C=O); 1592 (S, -C=N-); 1509 (s, N-H); 1205(m, S-C). EA (Anal. Calc. (%) for C₂₂H₁₅FN₂OS₂):C 65.01 H 3.72 N 6.90 S 15.74; Found (%):C 65.15, H 3.70, N 6.88 S 15.72.

S-13

1e:

(2,4-dichlorophenyl)((3Z)-5-(phenylamino)-3-(phenylimino)-3H-1,2-dithiol-4-yl)met hanone

Yield: 73.5%. mp 164-166°C; ¹H NMR (400Hz, CDCl₃): δ 12.773(s, 1H N-H); 8.487-6.840(m, 14H -C=C-H).IR(ν_{max} , cm⁻¹): 3430(w, N-H); 1606(s, -C=O); 1585(S, -C=N-); 1533(s, N-H); 1192(m, S-C). EA (Anal. Calc. (%) for C₂₂H₁₄Cl₂N₂OS₂):C 57.90 H 3.09 N 6.12 S 13.99; Found (%):C 57.80, H 3.00, N 6.14 S 13.89.

S-14

1f:

(2,5-dichlorophenyl)((3Z)-5-(phenylamino)-3-(phenylimino)-3H-1,2-dithiol-4-yl)met hanone

Yield: 75%. mp 173-175°C; ¹H NMR (400MHz, CDCl₃): δ 12.745(s, 1H N-H); 7.536-6.77(m, 14H -C=C-H).IR(ν_{max} , cm⁻¹): 3432, 3129(w, N-H); 1616(s, -C=O); 1581 (S, -C=N-); 1533(s, N-H); 1184 (m, S-C). EA (Anal. Calc. (%) for C₂₂H₁₄Cl₂N₂OS₂):C 57.90 H 3.09 N 6.12 S 13.99; Found (%):C 57.80, H 3.00, N 6.15 S 13.89.

S-15

S-16

1g:

(3,4-dichlorophenyl)((3Z)-5-(phenylamino)-3-(phenylimino)-3H-1,2-dithiol-4-yl)met hanone

S-18

1h:

(2,4-dichloro-5-fluorophenyl)((3Z)-5-(phenylamino)-3-(phenylimino)-3H-1,2-dithiol-4-yl)methanone

S-19

1i:

(2-bromo-6-methylphenyl)((3Z)-5-(phenylamino)-3-(phenylimino)-3H-1,2-dithiol-4yl)methanone

Yield: 71%. mp 172-174°C; ¹H NMR (400Hz, CDCl₃): δ 12.770(s, 1H N-H); 8.482-6.845(m, 14H -C=C-H).IR(v_{max} , cm⁻¹): 3433(w, N-H); 1609(s, -C=O); 1584 (S, -C=N-); 1545 (s, N-H); 1191(m, S-C). EA (Anal. Calc. (%) for C₂₃H₁₇BrN₂OS₂):C 57.50H3.57 N 5.83 S 13.29; Found (%):C 57.60, H 3.55,N 5.94 S 13.20.

S-21

1j:

((3Z)-5-(phenylamino)-3-(phenylimino)-3H-1,2-dithiol-4-yl)(pyridin-3-yl)methanone

Yield: 91.5%. mp 145-147°C; ¹H NMR (400Hz, CDCl₃): δ 10.859(s, 1H, N-H); 8.360-7.068(m, 15H, -C=C-H). IR(ν_{max} , cm⁻¹): 3427(w, N-H); 1618(s, -C=O); 1581 (S, -C=N-); 1496 (s, N-H); 1205(m, S-C). EA (Anal. Calc. (%) for C₂₁H₁₅N₃OS₂):C 64.77H3.89 N 10.80 S 16.43; Found (%):C 64.66, H 3.88,N 10.88 S 16.40.

S-23

S-24

5-2. Spectra data for 3H-[1,2]dithiolo[3,4-b]quinolin-4(9H)-one (2) 2a: (3Z)-9-phenyl-3-(phenylimino)-3H-[1,2]dithiolo[3,4-b]quinolin-4(9H)-one

Yield: 50%. mp 253-255C; ¹H NMR (400Hz, CDCl₃): $\delta 8.35-6.99$ (m, 14H –C=C-H).IR(v_{max} , cm⁻¹): 3437(w, N-H); 1643(s, -C=O); 1576 (s, -C=N-); 1193 (m, S-C). EA (Anal. Calc. (%) for C₂₂H₁₄N₂OS₂):C 68.37H 3.65 N 7.25 S 16.55; Found (%):C 68.31, H 3.70,N 7.30 S 16.50.

2e:

(3Z)-7-chloro-9-phenyl-3-(phenylimino)-3H-[1,2]dithiolo[3,4-b]quinolin-4(9H)-one

Yield: 63%. mp 274-276°C; ¹H NMR (400Hz, CDCl₃): $\delta 8.77-7.02$ (m, 13H-C=C-H).IR(ν_{max} , cm⁻¹): 3435 (w, N-H); 1644 (s, -C=O); 1587 (s, -C=N-); 1194 (m, S-C). EA (Anal. Calc. (%) for C₂₂H₁₃ClN₂OS₂):C 62.78 H 6.66 N 7.25 S 15.20; Found (%):C 62.75, H 3.10,N 6.68 S 15.23.

S-26

2f:

(3Z)-6-chloro-9-phenyl-3-(phenylimino)-3H-[1,2]dithiolo[3,4-b]quinolin-4(9H)-one

Yield: 60%. mp 270-272°C; ¹H NMR (400Hz, CDCl₃): δ 9.12-7.19 (m, 13H –C=C-H). IR(ν_{max} , cm⁻¹): 3417 (w, N-H); 1643 (s, -C=O); 1595 (s, -C=N-); 1214 (m, S-C). EA (Anal. Calc. (%) for C₂₂H₁₃ClN₂OS₂):C 62.78 H 6.66 N 7.25 S 15.20; Found (%):C 62.67, H 3.10,N 6.68 S 15.25.

S-27

2h:

(3Z)-7-chloro-6-fluoro-9-phenyl-3-(phenylimino)-3H-[1,2]dithiolo[3,4-b]quinolin-4(9 H)-one

Yield: 70.5%. mp 288-290°C; $IR(v_{max}, cm^{-1})$: 3424 (w, N-H); 1634 (s, -C=O); 1579 (s, -C=N-); 1214 (m, S-C). EA (Anal. Calc. (%) for C₂₂FH₁₂ClN₂OS₂):C 62.78 H 6.66 N 7.25 S 15.20; Found (%):C 62.67, H 3.10,N 6.68 S 15.25.

S-28

2i:

(3Z)-5-methyl-9-phenyl-3-(phenylimino)-3H-[1,2]dithiolo[3,4-b]quinolin-4(9H)-one

Yield: 85.5%. mp 260-262°C; ¹H NMR (400Hz, CDCl₃): δ 8.601-6.721 (m, 13H -C=C-H); IR(ν_{max} , cm⁻¹): 3427(w, N-H); 1629 (s, -C=O); 1587 (s, -C=N-); 1214 (m, S-C). EA (Anal. Calc. (%) for C₂₃H₁₆N₂OS₂):C 68.97 H 4.03 N 6.99 S 15.97; Found (%):C 68.80, H 3.99,N 7.02 S 15.96.

S-29

6. Crystallographic data for the compounds 1e

 Table S8.
 Crystal data and structure refinement for 1e.

Empirical formula	C22 H14 Cl2 N2 O S2
Formula weight	457.37
Temperature	293(2) K
Wavelength	0.71073 Å
Unit cell dimensions	$a = 10.084(2)$ Å $\alpha = 87.60(3)$ deg.
	$b = 10.331(2) \text{ Å} \beta = 85.58(3) \text{ deg.}$
	$c = 10.414(2) \text{ Å} \gamma = 78.10(3) \text{ deg.}$
Volume	$1058.1(4) \text{ Å}^3$
Z, Calculated density	2, 1.436 Mg/m^3
Absorption coefficient	0.520 mm^{-1}
F(000)	468
Theta range for data collection	1.96 to 26.97 deg.
Limiting indices	0<=h<=12,-12<=k<=13,
	-13<=1<=13
Reflections collected / unique	4872 / 4604 [R(int) = 0.0464]
Completeness to theta $= 26.97$	100.0 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4604 / 0 / 263
Goodness-of-fit on F^2	0.965
Final R indices [I>2sigma(I)]	R1 = 0.0668, WR2 = 0.1577
R indices (all data)	R1 = 0.1616, $wR2 = 0.2053$
Extinction coefficient	0.007(3)
Largest diff. peak and hole	0.438 and -0.490 e. Å ⁻³

S-30

S(1)-C(9)	1.804(4)	C(9)-S(1)-S(2)	96.46(2)
S(1)-S(2)	2.070(2)	C(7)-S(2)-S(1)	95.11(2)
S(2)-C(7)	1.747(4)	C(7)-N(1)-C(6)	124.0(4)
O(1)-C(16)	1.233(5)	C(9)-N(2)-C(10)	119.8(4)
N(1)-C(7)	1.323(5)	N(1)-C(7)-C(8)	126.3(4)
N(1)-C(6)	1.437(5)	N(1)-C(7)-S(2)	115.7(3)
N(2)-C(9)	1.270(5)	C(8)-C(7)-S(2)	118.0(3)
N(2)-C(10)	1.418(5)	C(7)-C(8)-C(9)	117.2(4)
C(7)-C(8)	1.399(6)	N(2)-C(9)-C(8)	127.0(4)
C(8)-C(9)	1.446(5)	N(2)-C(9)-S(1)	120.0(3)
		C(8)-C(9)-S(1)	113.0(3)

Table S9. Bond	l lengths [A]	and angles	[deg] for 1e.
----------------	---------------	------------	---------------

C22 H13 Cl2 F N2 O S2
475.36
293(2) K
0.71073 Å
a = 9.896(2) Å alpha = 89.64(3) deg. b = 10.256(2) Å beta = 73.71(3) deg. c = 11.128(2) Å gamma = 82.42(3) deg. 1074.0(4) Å ³
10/4.0(4) A 2 1 470 Ma/m ³
2, 1.470 Mg/m
0.522 mm
484
1.91 to 26.97 deg.
0<=h<=11, -12<=k<=12, -13<=l<=13
4867 / 4592 [R(int) = 0.0286]
98.4 %
Full-matrix least-squares on F ²
4592 / 0 / 271
1.034
R1 = 0.0482, wR2 = 0.1297
R1 = 0.0736, $wR2 = 0.1461$
$0.505 \text{ and } -0.325 \text{ e. } \text{Å}^{-3}$

 Table S10.
 Crystal data and structure refinement for 1h.

Table S11.	Bond len	gths [A] and angles [deg	g] for 1h .
S(1)-C(9)	1.798(2)	C(9)-S(1)-S(2)	96.36(8)
S(1)-S(2)	2.074(1)	C(7)-S(2)-S(1)	95.43(8)
S(2)-C(7)	1.751(2)	C(7)-N(1)-C(6)	123.74(2)
O(1)-C(16)	1.241(3)	C(9)-N(2)-C(10)	119.7(2)
N(1)-C(7)	1.336(3)	N(1)-C(7)-C(8)	126.0(2)
N(1)-C(6)	1.436(3)	N(1)-C(7)-S(2)	116.06(2)
N(2)-C(9)	1.269(3)	C(8)-C(7)-S(2)	117.92(2)
N(2)-C(10)	1.427(3)	C(7)-C(8)-C(9)	116.9(2)
C(7)-C(8)	1.401(3)	N(2)-C(9)-C(8)	126.4(2)
C(8)-C(9)	1.463(3)	N(2)-C(9)-S(1)	120.31(2)
		C(8)-C(9)-S(1)	113.35(2)

8. Crystallographic data for the compounds 1i

Table S12.Crystal data	a and structure refinement for 1i .
Empirical formula	C23 H17 Br N2 O S2
Formula weight	481.42
Temperature	293(2) K
Wavelength	0.71073 Å
Unit cell dimensions	a = $6.3729(13)$ Å alpha = $108.64(3)$ deg. b = $12.941(3)$ Å beta = $96.27(3)$ deg. c = $13.413(3)$ Å gamma = $96.96(3)$ deg
Volume	1027.5(4) Å ³
Z, Calculated density	1, 1.556 Mg/m^3
Absorption coefficient	2.221 mm^-1
F(000)	488
Theta range for data collection	1.62 to 24.99 deg.
Limiting indices	-7<=h<=7, -14<=k<=15, -15<=l<=7
Reflections collected / unique	4243 / 3546 [R(int) = 0.0211]
Completeness to theta $= 24.99$	97.7 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3546 / 2 / 261
Goodness-of-fit on F ²	1.035
Final R indices [I>2sigma(I)]	R1 = 0.0938, $wR2 = 0.2734$
R indices (all data)	R1 =0.1304, wR2 = 0.3077
Largest diff. peak and hole	0.969 and -1.032 e. Å $^{-3}$

S-33

S(1)-C(9)	1.788(6)	C(9)-S(1)-S(2)	96.9(2)
S(1)-S(2)	2.066(3)	C(7)-S(2)-S(1)	95.4(2)
S(2)-C(7)	1.737(6)	C(7)-N(1)-C(6)	125.3(5)
O(1)-C(16)	1.231(9)	C(9)-N(2)-C(10)	120.1(6)
N(1)-C(7)	1.327(8)	N(1)-C(7)-C(8)	124.8(6)
N(1)-C(6)	1.428(9)	N(1)-C(7)-S(2)	116.8(5)
N(2)-C(9)	1.266(9)	C(8)-C(7)-S(2)	118.4(5)
N(2)-C(10)	1.419(9)	C(7)-C(8)-C(9)	115.3(5)
C(7)-C(8)	1.429(9)	N(2)-C(9)-C(8)	125.4(6)
C(8)-C(9)	1.464(9)	N(2)-C(9)-S(1)	120.7(5)
		C(8)-C(9)-S(1)	113.9(5)

 Table S13.
 Bond lengths [A] and angles [deg] for 1i

9. Crystallographic data for the compounds 2e

S-34

Empirical formula	C22 H13 Cl N2 O S2
Formula weight	420.91
Temperature	293(2) K
Wavelength	0.71073 Å
Unit cell dimensions	a = 11.497(2) Å alpha = 90 deg.
	b = 7.5370(15) Å $beta = 103.64(3)$ deg.
	c = 22.384(5) Å gamma = 90 deg.
Volume	1884.9(7) Å ³
Z, Calculated density	4, 1.483 Mg/m^3
Absorption coefficient	0.440 mm^{-1}
F(000)	868
Theta range for data collection	1.82 to 26.96 deg.
Limiting indices	0<=h<=13, 0<=k<=8, -26<=l<=26
Reflections collected / unique	4160 / 3966 [R(int) = 0.0332]
Completeness to theta $= 26.96$	96.4 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3966 / 0 / 253
Goodness-of-fit on F ²	1.013
Final R indices [I>2sigma(I)]	R1 = 0.0536, $wR2 = 0.1404$
R indices (all data)	R1 = 0.1159, wR2 = 0.1700
Largest diff. peak and hole	0.603 and -0.365 e. Å $^{-3}$

Table S15.Bond lengths [Å] and angles [deg] for 2e.S(1)-C(9)1.815(3)C(9)-S(1)-S(2)97.28(1)S(1) S(2)2.062 (2)C(7) S(2) S(1)94.38(1)

S(1)-S(2)	2.062 (2)	C(7)-S(2)-S(1)	94.38(1)
S(2)-C(7)	1.745(3)	C(7)-N(1)-C(6)	118.8(2)
O(1)-C(16)	1.235(4)	C(9)-N(2)-C(10)	126.2(3)
N(1)-C(7)	1.358(4)	N(1)-C(7)-C(8)	124.6(3)
N(1)-C(6)	1.456(3)	N(1)-C(7)-S(2)	116.3(2)
N(2)-C(9)	1.277(4)	C(8)-C(7)-S(2)	119.1(3)
N(2)-C(10)	1.409(4)	C(7)-C(8)-C(9)	117.5(3)
C(7)-C(8)	1.384(4)	N(2)-C(9)-C(8)	124.5(3)
C(8)-C(9)	1.455(5)	N(2)-C(9)-S(1)	123.8(3)
		C(8)-C(9)-S(1)	111.6(2)
		C 25	

10. Drug screening report

Biology Principles. In the mitochondria of living cells, there are NADP-related dehydrogenases, which can reduce the ectogenic MTT (methyl thiazolyl tetrazolium) to undissoluvable amethyst crystal (formazan) and make it deposited in cells. Such phenomenon couldn't take place in dead cells. The MTT assay makes use of dimethyl sulfoxide (DMSO) or trigeminy reagent (10%SDS-5%isobutanol-0.01mol/L HCl) to dissolve the amethyst crystals and determine the OD value at 570nm wave by the Universal Microplate Reader ELx800 (BioTek) to reflect the amount of living cells indirectly. This assay is frequently used in the vitro research in antitomor drugs, especially as to the large-scale screening.

Methods and Highlights. Innoculate the tumor cells in exponential phase of growth to a 96-well plate quantitively and add drug solution to the medium after incubating for 24 hours. Incubate 48 hours continuously at 37 $^{\circ}$ C and 5% CO₂, add MTT solution and incubate for another 4 hours. Then, DMSO is added and the OD value at 570nm wave is determined by the Universal Microplate Reader ELx800 (BioTek) when the mixture is dissolved. Overnight incubation is needed before determining if the trigeminy reagent is used to dissolve precipitation.

Entry		IC50			
Entry	10 ⁻⁴ M	10 ⁻⁵ M	10 ⁻⁶ M	10 ⁻⁷ M	1000
1c	78.91%	62.72%	53.54%	2.22%	1.36 x 10 ⁻⁶ M
2a	48.19%	10.91%	3.65%	3.33%	3.11 x 10 ⁻⁴ M

Table S16 The Inhibition Effects of tested drugs on Vitro growth of HepG-2.

Fntry	Concentration				IC50
Entry	10 ⁻⁴ M	10 ⁻⁵ M	10 ⁻⁶ M	10 ⁻⁷ M	1050
1c	58.77%	15.57%	7.69%	6.41%	1.39 x 10 ⁻⁴ M
2a	11.88%	11.04%	5.30%	0.99%	7.34 x 10 ⁻³ M

Table S18. The Inhibition Effects of tested drugs on Vitro growth of HepG-2 at different time

Entry	Time (II)	Concentration			
Linu y	Time (H)	10 ⁻⁴ M	10 ⁻⁵ M	10 ⁻⁶ M	10 ⁻⁷ M
	12h	41.26%	29.14%	17.38%	14.36%
1b	24h	53.52%	35.06%	26.99%	16.46%
	48h	73.02%	50.54%	29.46%	18.85%
	12h	23.60%	16.77%	11.63%	10.36%
lh	24h	36.52%	20.67%	18.14%	13.70%
	48h	63.60%	25.62%	17.41%	15.75%
1d	12h	71.55%	59.21%	38.78%	10.37%
	24h	77.56%	66.82%	45.61%	11.02%
	48h	93.69%	83.65%	59.75%	16.04%
	12h	47.75%	35.41%	15.11%	12.80%
1j	24h	62.64%	41.33%	19.60%	10.22%
	48h	70.81%	50.72%	26.20%	18.04%
	12h	29.28%	18.33%	14.82%	12.36%
2d	24h	44.69%	24.89%	11.21%	8.24%
	48h	57.75%	15.02%	12.51%	0.02%