Supporting Information

Highly water-soluble arene-ruthenium(II) complexes: application to catalytic isomerization of allylic alcohols in aqueous medium.

Beatriz Lastra-Barreira, Josefina Díez, Pascale Crochet*

Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" (Unidad Asociada al CSIC), Facultad de Química,

Universidad de Oviedo, E-33071 Oviedo, Spain. Fax: (+34)-985 10 34 46, e-mail:

crochetpascale@uniovi.es.

1. Preparation and characterization of [RuCl₂(η^6 -*p*-cymene){P(OⁱPr)₃}], 3c. A solution of the dimer [{RuCl(μ -Cl)(η^6 -*p*-cymene)}₂] (0.175 g, 0.300 mmol) and P(OⁱPr)₃ (205 µL, 0.838 mmol) in 25 ml of CH₂Cl₂ was stirred for 1 h at room temperature. After evaporation to dryness, the resultant residue was washed with a 3:1 mixture of hexane:diethyl ether (5 x 30 ml) and dried in vacuo, affording 3c as a red solid. Yield: 0.217 g (72%). ³¹P{¹H} NMR, CDCl₃, & 107.5 (s). ¹H NMR, CDCl₃, & 5.49 and 5.35 (both d, 2 H each, ³*J*_{HH} = 5.9, CH, cymene), 4.90-4.82 (m, 3 H, OCHMe₂), 2.87 (sept, 1 H, ³*J*_{HH} = 6.9, CHMe₂, cymene), 2.12 (s, 3 H, Me, cymene), 1.30 (d, 18 H, ³*J*_{HH} = 6.2, OCH*Me*₂), 1.24 (d, 6 H, ³*J*_{HH} = 6.9, CH*Me*₂, cymene). ¹³C{¹H} NMR, CDCl₃, & 107.7 (s, C of cymene), 100.9 (s, C of cymene), 88.8 (d, ²*J*_{PC} = 3.2 CH of cymene), 88.7 (d, ²*J*_{PC} = 2.4, CH of cymene), 71.1 (d, ²*J*_{PC} = 7.2, OCHMe₂), 30.4 (s, CHMe₂), 23.8 (d, ³*J*_{PC} = 4.0, OCH*Me*₂), 21.8 (s, CH*Me*₂), 17.9 (s, Me of cymene). Anal. Calcd for C₁₉H₃₅Cl₂O₃PRu: C, 44.12; H, 7.01. Found: C, 44.36; H, 6.86. Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2009

2. X-ray crystal structure determination of complexes 2a-b. The most relevant crystallographic and refinement data are given in Tables S1 (2a) and S3 (2b). Selected bond distance and angle values are given in Tables S2 (2a) and S4 (2b). Diffraction data were recorded on a Nonius KappaCCD single crystal diffractometer using Mo-K_{α} radiation ($\lambda = 0.71073$ Å). The data were collected the oscillation method, with 1° oscillation and 80 s exposure time per frame, and a crystal-to-detector distance of 35 mm. The data collection strategy was calculated with the program Collect.¹ Data reduction and cell refinement were performed using the programs HKL Denzo and Scalepack.² Absorption correction was applied by means of SORTAV.³

The software package WINGX was used for space group determination, structure solution and refinement.⁴ Crystal structures were solved by direct methods, using the program SIR-2004.⁵ Anisotropic least-squares refinement was carried out with SHELXL-97.⁶ All non-hydrogen atoms were anisotropically refined. For **2a**, the hydrogen atoms were geometrically placed riding on their parent atoms with isotropic displacement parameters set to 1.2 times the U_{eq} of the atoms to which they are attached (1.5 for methyl groups). For **2b**, the coordinates of H atoms were found from different Fourier maps, and included in a refinement with isotropic parameters. The function minimized was $([\Sigma w(F_0^2 - F_c^2)/\Sigma w(F_0^2)]^{\frac{1}{2}}$ where $w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$ (*a* and *b* values are shown in Tables S1 and S3) with $\sigma^2(F_0^2)$ from counting statistics and P = $(\max (F_0^2, 0) + 2F_c^2)/3$.

Atomic scattering factors were taken from the International Tables for X-ray Crystallography.⁷ Geometrical calculations were made with PARST.⁸ Crystallographic plots were made with PLATON.⁹ Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication N° CCDC 728240 (**2a**) and 728241 (**2b**). The data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html.

Table S1. Crystal data and structure refinement for 2a.

Empirical formula	$C_{11}H_{19}Cl_2O_5PRu$		
Formula weight	434.20		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit Cell dimensions	a = 6.9850(6) Å	$\alpha = 80.825(4)^{\circ}$	
	b = 7.3150(6) Å	$\beta = 81.027(4)^{\circ}$	
	c = 16.9400(16) Å	$\gamma = 63.636(5)^{\circ}$	
Volume	762.05(12) Å ³		
Ζ	2		
Density (calculated)	1.892 g/cm^3		
F(000)	436		
Crystal size	0.1 x 0.10 x 0.05 mm ³	0.1 x 0.10 x 0.05 mm ³	
Theta range for data collection	2.45-25.38	2.45-25.38	
Reflections collected	9619		
Independent reflections	2771		
Weight function (a, b)	0.0586, 0		
Final R indices [I>2sigma(I)]	R1 = 0.0364, wR2 = 0.0	R1 = 0.0364, wR2 = 0.0948	
R indices (all data)	R1 = 0.0460, wR2 = 0.0000	R1 = 0.0460, wR2 = 0.0991	

 Table S2: Selected bond distance and angle values for 2a.

Bond distances (Å)		Bond angles (°)	
Ru-Cl(1)	2.4145(10)	$C^*-Ru-Cl(1)$	122.41(3)
Ru-Cl(2)	2.4024(11)	$C^*-Ru-Cl(2)$	125.79(3)
Ru-P	2.2948(12)	C*-Ru-P	130.60(3)
Ru-C*	1.7330(4)	Cl(1)-Ru- $Cl(2)$	88.86(4)
C(6)-O(1)	1.345(5)	Cl(1)-Ru-P	90.53(4)
		Cl(2)-Ru-P	86.18(4)
		C(6)-O(1)-C(7)	117.8(3)
Torsion angles			
C(1)-C(6)-O(1)-C(7)	-1.9(6)		

 C^* = centroid of the arene ring (C(1), C(2), C(3), C(4), C(5) and C(6) carbon atoms).

Figure S1. ORTEP type view of the structure of $[RuCl_2(\eta^6-C_6H_5OCH_2CH_2OH)\{P(OMe)_3]$ (2a). Hydrogen atoms, except OH one, are omitted for clarity. Thermal ellipsoids are drawn at 20% probability level.

Table S3. Crystal data and structure refinement for 2b.

Empirical formula	C14H25Cl2O5PRu		
Formula weight	476.28		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	$P2_1/c$		
Unit Cell dimensions	a = 7.6034(1) Å	$\alpha = 90^{\circ}$	
	b = 14.0769(2) Å	$\beta = 109.371(1)^{\circ}$	
	c = 18.3180(3) Å	$\gamma = 90^{\circ}$	
Volume	1849.63(5) Å ³		
Z	4		
Density (calculated)	1.710 g/cm^3		
F(000)	968		
Crystal size	0.5 x 0.15 x 0.1 mm ³		
Theta range for data collection	1.87-25.23		
Reflections collected	9264		
Independent reflections	3301		
Weight function (a, b)	0.0676, 1.1315		
Final R indices [I>2sigma(I)]	R1 = 0.0307, wR2 = 0.0861		
R indices (all data)	R1 = 0.0379, wR2 = 0.1162	2	

 Table S4: Selected bond distance and angle values for 2b.

Bond distances	(Å)	Bond angles (°)	
Ru-Cl(1)	2.4128(8)	C*-Ru-Cl(1)	124.61(2)
Ru-Cl(2)	2.4061(8)	$C^*-Ru-Cl(2)$	124.24(2)
Ru-P	2.2786(9)	C*-Ru-P	129.80(2)
Ru-C*	1.7181(2)	Cl(1)-Ru- $Cl(2)$	87.34(3)
C(6)-O(1)	1.338(4)	Cl(1)-Ru-P	87.79(3)
		Cl(2)-Ru-P	90.44(3)
		C(6)-O(1)-C(7)	121.4(3)
Torsion angles			
C(1)-C(6)-O(1)-	·C(7) 2.1(5)		

 C^* = centroid of the arene ring (C(1), C(2), C(3), C(4), C(5) and C(6) carbon atoms).

Figure S2. ORTEP type view of the structure of $[RuCl_2(\eta^6-C_6H_5OCH_2CH_2OH)\{P(OEt)_3]$ (**2b**). Hydrogen atoms, except OH one, are omitted for clarity. Thermal ellipsoids are drawn at 20% probability level.

3. Behavior of complexes 2a-c in water.

When complexes $[RuCl_2(\eta^6-C_6H_5OCH_2CH_2OH)\{P(OR)_3\}]$ (R = Me (**2a**), Et (**2b**), ⁱPr (**2c**)) were dissolved in D₂O a mixture of $[RuCl_2(\eta^6-C_6H_5OCH_2CH_2OH)\{P(OR)_3\}]$ and $[RuCl(H_2O)(\eta^6-C_6H_5OCH_2CH_2OH)\{P(OR)_3\}][Cl]$ is observed by NMR spectroscopy.

Characterization of $[RuCl_2(\eta^6-C_6H_5OCH_2CH_2OH)\{P(OMe)_3\}]$ (2a) and $[RuCl(H_2O)(\eta^6-C_6H_5OCH_2CH_2OH)\{P(OMe)_3\}][Cl]$ (2a') in water. Data for 2a: ³¹P{¹H} NMR, D₂O, & 125.3 (s). ¹H NMR, D₂O, & 6.55 (m, 2 H, CH_{meta}), 6.02 (d, 2 H, ³J_{HH} = 5.7, CH_{ortho}), 5.68 (t, 1 H, ³J_{HH} = 5.3, CH_{para}), 4.71 (m, 2 H, OCH₂), 4.36 (m, 2 H, OCH₂), 4.16 (d, 9 H, ³J_{PH} = 11.4, Me). Data for 2a': ³¹P{¹H} NMR, D₂O, & 123.9 (s). ¹H NMR, D₂O, & 6.28 (t, 1 H, ³J_{HH} = 5.9, CH_{para}), 6.18 (m, 1 H, CH_{ortho}), 6.01 (d, 1 H, ³J_{HH} = 6.5, CH_{ortho}), 5.43 (m, 2 H, CH_{meta}), 4.38 (m, 2 H, OCH₂), 4.03 (m, 2 H, OCH₂), 3.84 (m, 9 H, Me). Molar conductivity in water: $\Lambda_M = 79 \Omega . \text{cm}^2.\text{mol}^{-1}$.

Characterization of [RuCl₂(η⁶-C₆H₅OCH₂CH₂OH){P(OEt)₃}] (2b) and [RuCl(H₂O)(η⁶-C₆H₅OCH₂CH₂OH){P(OEt)₃}]/[Cl] (2b') in water. Data for 2b: ³¹P{¹H} NMR, D₂O, & 118.0 (s). ¹H NMR, D₂O, & 6.12 (broad s, 2 H, CH_{meta}), 5.58 (broad s, 2 H, CH_{ortho}), 5.22 (broad s, 1 H, CH_{para}), 4.35 (broad s, 2 H, OCH₂), 4.15 (m, 6 H, CH₂Me), 4.00 (broad s, 2 H, OCH₂), 1.35 (t, 9 H, ³J_{HH} = 6.2, Me). Data for 2b': ³¹P{¹H} NMR, D₂O, & 117.4 (s). ¹H NMR, D₂O, & 6.12 (m, 1 H, CH_{meta}), 6.00 (m, 1 H, CH_{meta}), 5.84 (dt, 1 H, ³J_{HH} = 6.4, ⁴J_{HH} = 2.0, CH_{ortho}), 5.27 (dd, 1 H, ³J_{HH} = 6.4, ⁴J_{PH} = 2.0, CH_{ortho}), 5.23 (t, 1 H, ³J_{HH} = 5.2, CH_{para}), 4.26 (t, 2 H, ³J_{HH} = 3.6, OCH₂), 4.07 (dq, 6 H, ³J_{PH} = 14.4, ³J_{HH} = 6.8, CH₂Me), 3.90 (m, 2 H, OCH₂), 1.24 (dt, 9 H, ⁴J_{PH} = ³J_{HH} = 6.8, CH₂Me). Molar conductivity in water: Λ_M = 74 Ω.cm².mol⁻¹. *Characterization of* [*RuCl₂(η⁶-C₆H₅OCH₂CH₂OH)*{*P*(*OⁱPr*)₃}] (2c) and [*RuCl*(*H*₂O)(η⁶-*C*₆*H*₅OCH₂CH₂OH){*P*(*OⁱPr*)₃}][*Cl*] (2c') in water. Data for 2c: ³¹P{¹H} NMR, D₂O, δ: 111.5 (s). ¹H NMR, D₂O, δ: 6.08 (m, 2 H, CH_{meta}), 5.37 (d, 2 H, ³*J*_{HH} = 4.8, CH_{ortho}), 5.00 (t, 1 H, ³*J*_{HH} = 5.2, CH_{para}), 4.66 (m, 3 H, C*H*Me₂), 4.22 (m, 2 H, OCH₂), 3.90 (m, 2 H, OCH₂), 1.27 (m, 18 H, CH*Me*₂). Data for 2c': ³¹P{¹H} NMR, D₂O, δ: 111.2 (s). ¹H NMR, D₂O, δ: 6.01 (m, 1 H, CH_{meta}), 5.97 (m, 1 H, CH_{meta}), 5.77 (d, 1 H, ³*J*_{HH} = 6.4, CH_{ortho}), 5.21 (d, 1 H, ³*J*_{HH} = 5.6, CH_{ortho}), 5.13 (t, 1 H, ³*J*_{HH} = 5.2, CH_{para}), 4.66 (m, 3 H, C*H*Me₂), 4.25 (m, 2 H, OCH₂), 3.90 (m, 2 H, OCH₂), 1.29 (m, 18 H, CH*Me*₂). Molar conductivity in water: $\Lambda_{\rm M}$ = 47 Ω.cm².mol⁻¹.

NMR spectra of 2b/2b' in D_2O .

Figure 1: ³¹P{¹H} NMR of **2b** in D₂O without NaCl (part a) and with NaCl (part b). Signals due to $[RuCl_2(\eta^6-C_6H_5OCH_2CH_2OH)\{P(OEt)_3\}]$ (**2b**) and $[RuCl(H_2O)(\eta^6-C_6H_5OCH_2CH_2OH)\{P(OEt)_3\}][Cl]$ (**2b**') are indicated with * y Δ , respectively.

Figura 2: Detail of ¹H NMR of **2b** in D₂O without NaCl (part a) and with NaCl (part b). Signals due to $[RuCl_2(\eta^6-C_6H_5OCH_2CH_2OH)\{P(OEt)_3\}]$ (**2b**) and $[RuCl(H_2O)(\eta^6-C_6H_5OCH_2CH_2OH)\{P(OEt)_3\}][Cl]$ (**2b**') are indicated with * y Δ , respectively.

4. Catalytic redox isomerization of allylic alcohols in THF.

Table S5. Isomerization of 1-octen-3-ol into 3-octanone catalyzed by complexes [RuCl₂(η^6 -C₆H₅OCH₂CH₂OH)(L)] (**2a-e**).^a

Catalyst [L]	Time	Yield (%) ^b	$TOF(h^{-1})^{c}$
2a [P(OMe) ₃]	5 min	> 99	1200
2b [P(OEt) ₃]	5 min	> 99	1200
2c $[P(O^{i}Pr)_{3}]$	5 min	> 99	1200
2d [P(OPh) ₃]	4 h	> 99	25
2e [PPh ₃]	20 min	> 99	300

^a Reactions carried out at 75°C using 4 mmol of 1-octen-3-ol, 1 mol% of Ru, 5 mol% of KO^tBu and 20 mL of THF. ^b Determined by GC analyses. ^c TOF = Turn Over Frequency, ((mol of product/mol of catalyst)/time), calculated at the time indicated in each case.

References

- 1 *Collect:* data collection software, Bruker AXS, Delf, The Netherlands, 2004.
- 2 Z. Otwinowski, W. Minor, *Methods Enzymol.*, 1997, 276, 307.
- 3 R. H. Blessing, Acta Crystallogr., Sect. A, 1995, **51**, 33.
- 4 L. J. Farrugia, J. Appl. Crystallogr., 1999, **32**, 837.
- 5 M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Spagna, *SIR2004, J. Appl. Cryst.*, 2005, **38**, 381.
- 6 G. M. Sheldrick, *SHELXL97: Program for the refinement of Crystal Structures*, University of Göttingen, Göttingen, Germany, 1997.
- 7 International Tables for X-ray Crystallography, Kynoch Press, Birminghan, UK, 1974,
 Vol. IV (present distributor: Kluwer Academic Publishers, Dordrecht, The Netherlands).
- 8 M. Nardelli, Comput. Chem., 1983, 7, 95.
- 9 A. L. Spek, *PLATON: A multipurpose Crystallographic Tool*, University of Utrecht, The Netherlands, 2007.