Mild water-promoted deacetalisation of aromatic acyclic acetals

D. Bradley G. Williams,^{*} Adam Cullen, Alex Fourie, Hendrik Henning, Michelle Lawton, Wayne Mommsen, Portia Nangu, Jonathan Parker, Alicia Renison

Department of Chemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa; <u>bwilliams@uj.ac.za</u>

Index	Page
1. General experimental procedures	2
2. List of known compounds with references; list of new compounds with analytical data	2
3. Copies of ¹ H and ¹³ C NMR spectra of new compounds	11

The majority of the acetals used in this study are either commercially available or have been previously described and characterised. The latter are referenced. The few that have not been previously described are provided with analytical details. NMR spectra are also provided.

General experimental procedure:

The reactions were performed in neat deionised water unless otherwise indicated. No special precautions were taken to exclude oxygen and standard round bottomed flasks were used. To 12.5 mmol of the acetal were added 15 mL of deionised water. The reaction vessel was heated to 80 °C for the determined period of time after which the water was simply removed by evaporation thereof. Alternatively, diethyl ether $(3 \times 5 \text{ mL})$ could be used with which to extract the organic material from the aqueous layer. The organic phase was dried with anhydrous magnesium sulphate and the volatile component removed under vacuum. In all cases the products were isolated directly in >98% purity as determined by ¹H NMR and GC analyses without further need for purification. The aldehyde or ketone products were compared spectroscopically with their commercially available counterparts.

In instances where the reactions were performed under pressure, stainless steel autoclaves fitted with a PTFE liner, a pressure gauge, filler fitting with a tap valve (needle type) and pressure relief safety device were used (Caution: high pressure reactions should be performed only by suitably trained personnel who understand the risks involved, making use of appropriate pressure vessels). The acetal was weighed directly into the PTFE liner which was then placed inside the pressure vessel. The relevant aqueous solvent mixture as indicated in the main text of this manuscript was added to the acetal and the pressure vessel sealed and pressurised with nitrogen from a high pressure cylinder. The vessels was heated in an oil bath to the temperature and for the time indicated in the main text of this article. At the end of the reaction the pressure vessel was cooled and de-pressurised inside a fume hood. The reaction contents were then treated as usual (see above) to isolate the products.

Bandgar, B. P.; Gaikwad, N. B. Monatsh. Chem. 1998, 129, 719.

Commercially available

Mansilla, H.; Afonso, M. M. Synth. Commun. 2008, 38, 2607.

Commercially available

Bandgar, B. P.; Gaikwad, N. B. Monatsh. Chem. 1998, 129, 719.

Clerici, A.; Pastori, N.; Porta, O. Tetrahedron 1998, 54, 15679.

2c Baldoli, C.; Maiorana, S.; Licandro, E.; Casiraghi, L.; Zinzalla, G.; Seneci, P.; De Magistris, E.; Paio, A.; Marchioro, C. *J. Comb. Chem.* **2003**, *5*, 809.

Moghaddam, F. M.; Sharifi, A. Synth. Commun. 1995, 25, 2457.

4c Prepared according to Williams, D. B. G.; Lawton, M. *Green Chem.* 2008, 10, 914; (12.5 mmol scale, 92% yield). ¹H NMR (CDCl₃, 300 MHz): 7.63 (dd, 1H, J = 7.7, 1.7 Hz), 7.21 (ddd,1H, J = 8.1, 7.7, 1.7 Hz), 6.97 (t, 1H, J = 7.7 Hz), 6.87 (d, 1H, J = 8.1 Hz), 5.77 (s, 1H), 3.82 (s, 3H), 3.74 (d, 2H, J = 11.0 Hz), 3.66 (d, 2H, J = 11.0 Hz), 1.31 (s, 3H), 0.77 (s, 3H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 157.6, 130.0, 127.1, 125.7, 120.8, 110.6, 96.8, 77.9, 55.6, 30.3, 23.1, 21.9; IR v_{max} 2948, 2859, 1498, 1394, 1245, 1086, 988 cm⁻¹; CI-HRMS C₁₃H₁₄O₃ [M]⁺ calcd 222.1256, found 222.1253.

Gopinath, R.; Haque, Sk. J.; Patel, B. K. J. Org. Chem. 2002, 67, 5842

3d Banik, B. K.; Chapa, M.; Marquez, J.; Cardona, M. *Tetrahedron Lett.* **2005**, 46, 2341.

Bandgar, B. P.; Gaikwad, N. B. Monatsh. Chem. 1998, 129, 719.

4e Prepared according to Williams, D. B. G., Lawton, M. *Green Chem.* 2008, 10, 914; (12.5 mmol scale, 96% yield). ¹H NMR (CDCl₃, 300 MHz): 7.99 (s, 1H), 7.22 (t, 1H, J = 7.8 Hz), 7.16 (dd, 1H, J = 7.8, 1.5 Hz), 6.88 (d, 1H, J = 7.8 Hz), 6.85 (td, 1H, J = 7.8, 1.5 Hz), 5.53 (s, 1H), 3.81 (d, 2H, J = 11.3 Hz), 3.66 (d, 2H, J = 11.3 Hz), 1.28 (s, 3H), .081 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 155.3, 130.4, 128.0, 121.7,

119.7, 117.2, 103.2, 77.6, 30.3, 23.0, 21.8; IR (v_{max} cm⁻¹) 3335, 2958, 2872, 1491, 1476, 1384, 1242, 1086; CI-HRMS C₁₅H₂₉O₂ [M-H]⁺ calcd 241.2162, found 241.2166.

1f

Clerici, A.; Pastori, N.; Porta, O. Tetrahedron 1998, 54, 15679.

Mansilla, H.; Afonso, M, M. Synth. Commun. 2008, 38, 2607.

Moghaddam, F. M.; Sharifi, A. Synth. Commun. 1995, 25, 2457.

Bandgar, B. P.; Gaikwad, N. B. Monatsh. Chem. 1998, 129, 719.

4h Horsfall, J. G.; Lukens, R. J. *Conn. Agr. Expt. Sta., New Haven, Bull.* 1965, 673, 1. (NMR and MS data given here due to lack of general access to this reference: Prepared according to Williams, D. B. G., Lawton, M. *Green Chem.* 2008, *10*, 914; (12.5 mmol scale, 96% yield). ¹H NMR (CDCl₃, 300 MHz): 4.36 (t, 1H, J = 5.0Hz), 3.55 (d, 2H, J = 11.1 Hz), 3.37 (d, 2H, J = 11.1 Hz), 1.62-1.54 (m, 2H), 1.39-1.20 (m, 14H), 1.14 (s, 3H), 0.83 (t, 3H, J = 6.8 Hz) 0.67 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 102.3, 77.2, 34.9, 31.8, 30.1, 29.52, 29.48, 29.3, 24.0, 22.9, 22.6, 21.8, 14.1, 14.1; IR (v_{max} cm⁻¹): 2925, 2853, 1468, 1394, 1119, 1106, 908; CI-HRMS C₁₅H₂₉O₂ [M-H]⁺ calcd 241.2162, found 241.2166.

Novak, M.; Roy, K. R. J. Org. Chem. 1984, 49, 4584.

Ma, Y.-R.; Jin, T.-S.; Shi, S.-X.; Li, T.-S. Synth. Commun. 2003, 33,

2103.

Commercially available

9a Prepared according to Williams, D.B.G., Lawton, M. Green Chem. 2008, 10, 914; (12.5 mmol scale, 89% yield). ¹H NMR (CDCl₃, 300 MHz): δ 8.21 (d, 2H, J = 8.9 Hz), 7.58 (d, 2H, J = 8.9 Hz), 3.41 (d, 2H, J = 11.0 Hz), 3.29 (d, 2H, J = 11.0 Hz), 1.50 (s, 3H), 1.23 (3, 3H), .058 (s, 3H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 148.9, 147.5, 127.7, 123.8, 99.5, 71.7, 31.4, 29.8, 22.6, 21.6; IR (v_{max} cm⁻¹): 2948, 2872, 1512, 1349, 1182, 1076; CI-HRMS C₁₃H₁₈O₄N [M+H]⁺ calcd 252.1236 found 252.1239.

Commercially available

Mansilla, H.; Afonso, M, M. Synth. Commun. 2008, 38, 2607.

6c Kerti, G.; Kurtan, T.; Borbas, A.; Szabo, Z. B.; Liptak, A.; Szilagyi, L.; Illyes-Tuende, Z.; Benyei, A.; Antus, S.; Watanabe, M.; Castiglioni, E.; Pescitelli, G.; Salvadori, P. *Tetrahedron.* **2008**, *64*, 1676.

7c Prepared from 2-acetonaphthone (2.128 g, 12.5 mmol scale) according to Williams, D.B.G.; Lawton, M. *Green Chem.* **2008**, *10*, 914 (2.718 g, 11.1 mmol, 89% yield). ¹H NMR (CDCl₃, 300 MHz): δ 8.03 (br s, 1H), 7.89-7.79 (m, 2H), 7.81 (d, 1H, J = 8.7 Hz), 7.60 (dd, 1H, J = 7.8, 1.8 Hz), 7.49-7.42 (m, 2H), 3.59-3.48 (m, 2H), 3.45-3.35 (m, 2H), 1.63 (s, 3H), 1.24 (t, 6H, J = 6.9 Hz); ¹³C NMR (CDCl₃, 75.5 MHz): δ 141.3, 133.1, 132.7, 128.4, 127.7, 127.5, 125.8 (2C), 125.2, 124.3, 101.3, 56.8, 27.0, 15.4, 15.2; IR (v_{max} cm⁻¹): 2976, 1371, 1277, 1132, 1048, 906; CI-HRMS C₁₄H₁₅O [M-C₂H₅O]⁺ calcd 199.1123, found 199.1127.

Hyder, Z.; Ruan, J.; Xiao, J. Chem. Eur. J. 2008, 14, 5555.

9c Grosu, I.; Ple, G.; Mager, S.; Mesaros, E.; Dulau, A.; Gego, C. *Tetrahedron* **1998**, *54*, 2905.

11 Nao, H.; Kiyoshi, K.; Hisashi, S.; Tsuneo, S. Synlett 2004, 6,

1074.

13 Prepared according to Nao, H.; Kiyoshi, K.; Hisashi, S.; Tsuneo, S. *Synlett* **2004**, *6*, 1074, as for the synthesis of **11**. ¹H NMR (CDCl₃, 300 MHz): 7.61 (s, 1H), 7.49 (d, J = 7.5 Hz, 2H), 7.36 (t, J = 7.5 Hz, 1H), 5.38 (s, 2H), 3.75 (d, J = 10.8 Hz, 2H), 3.61 (d, J = 10.8 Hz, 2H), 3.31 (s, 3H), 3.29 (s, 3H), 1.26 (s, 3H), 0.77 (s, 3H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 138.5, 128.1, 127.1, 126.7, 126.2, 125.1, 102.7, 101.6, 77.6, 52.7, 52.5, 30.2, 23.0, 21.8; IR v_{max} 2954, 2831, 1450, 1349, 1159, 1101, 1052 cm⁻¹; CI-HRMS C₁₅H₂₃O₄ [M+H]⁺ calcd 267.1596, found 267.1592.

Relax. delay 1.000 sec Pulse 88.7 degrees Acq. time 2.000 sec width 4800.0 Hz Single scan OBSERVE H1, 300.0575472 MHz DATA PROCESSING FT size 32768 FT size 32768 FT size 32768 -"kmr300" 11 Pulse Sequence: s2pul Solvent: CDCl3 Ambient temperature File: 1 GEMINI-300BB "kmr300 s2pu1 2.2 1H OBSERVE 12 11 STANDARD

A28 A28 1 10.42 Spect	5 mm PABBO BB- zgig30 65536 65536 65536 65536 128 128 24038.461 Hz 0.366798 Hz 1.3631988 sec 128 20.800 usec 6.50 usec 6.50 usec 0.03000000 sec 1	CHANNEL fl ========= 13C 9.60 usec -1.50 dB 51.80275345 W 100.6328888 MHz	CHANNEL f2 ===================================
NAME EXPNO PROCNO Date Time TNSTRUM	PROBHD FULPROG TD SOLVENT NS SOLVENT S	E====== NUC1 PL1 PL1W SF01	CPDPRG2 CPDPRG2 NUC2 PCPD2 PL2W PL12W SFO2 SFO2 SFO2 SFO2 SFO2 SFO2 SFO2 SFO2
62°TZ 53°00 91°28	2		
6 b* SS			
89'9L 00'LL 25'LL LL'LL			

mdd

LL·LL			8
₽L°96	21 <u>-</u>		100
LS'OTT			-
			120
56.95			140
₽£.321			160
-0 -0 *		يلين والمحافظ المحافظ ا محافظ المحافظ ال والمحافظ المحافظ المحاف	180
	12		-

$ \begin{array}{c} 101 \\ 6.50 \\ 10800 \\ 1086c \\ 6.50 \\ 1086c \\ 6.50 \\ 1086c \\ 226000000 \\ 86c \\ 10000000 \\ 1086c \\ -1.50 \\ 0 \\ 10000000 \\ 1086c \\ -3.000 \\ 100000 \\ 1000000 \\ 100000 \\ 1000000 \\ 100000 \\ 1000000 \\ 100000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 10000000 \\ 1000000 \\ 10000000 \\ 1000000 \\ 10000000 \\ 10000000 \\ 10000000 \\ 10000000 \\ 100000000$	<pre>ME A30-1H PNO 3 DCNO 1 te 9.57 me 9.57 me 9.57 me 9.57 me 9.57 me 9.57 DBHD 5 mm PABBO BB- CVENT 5 mm PABBO BB- 65536 65536 65536 65536 101 128 128 128 128 128 128 128 128 128 128</pre>
40	
	×

T0'EOT		100
S0'LTT 25'6TT 0L'TZT 88'LZT 		120
		140
91'991		160
H H H H H H H H H H H H H H H H H H H	14	180

13C OBSERVE

20

Pulse Sequence: s2pul

OEt_napthyl_Ketone

	A25-clean Purse Bequence: s2pul Solvent: CDC13 Ambient temperature GEMINI-300BB "kmr300" Relax. delay 1.000 sec Pulse 9.0 degrees Acq. time 2.000 sec Vidth 4800.0 Hz Single scan OBSERVE H1, 300.0575469 MHz Single scan OBSERVE H1, 300.0575469 MHz DATA PROCESSING FT size 32768 Total time 0 min, 4 sec
--	--

.

10

σ

A24b A24b 2 1.36 1.36 55536 65536 65536 65536 65536 65536 8192 8192 8192 8192 8192 8192 8192 8192	f1 ======== 13C 9.60 usec -1.50 dB 275345 W 328888 MHz	f2 ====================================
а 5 mm 20 240 2.00 0.03	== CHANNEL 51.80	== CHANNEL 2 23.05 0.34 400.1
NAME EXPNO FROCNO PROCNO PROBHD PROBH	EEEE NUC1 PL1 PL1W SF01 SF01	CPDPRG CPDPRG NUC2 PL12 PL12 SFO2 SFO2 SFO2 SFO2 SFO2 SFO2 SFO2 SFO
98°TZ 53°00		
25.53		
89.91 00.11 25.11 65.11 59.11		

60 40 20

- mdd

80

