Supporting Information

Ligand-free copper-catalyzed coupling of nitroarenes with

arylboronic acids

Jilei Zhang, Jiuxi Chen,^{*} Miaochang Liu, Xingwang Zheng, Jinchang Ding and Huayue Wu^{*}

College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China

Email: jiuxichen@wzu.edu.cn; huayuewu@wzu.edu.cn

List of Contents

1.	General experimental detailsS2
2.	General procedure
3.	The ¹⁸ O-labeled experiments determined by GC-MS and HRMS analysisS4-S8
4.	Analytical data for products
5.	Copies of product ¹ H NMR and ¹³ C NMR

1. General experimental details

Chemicals were either purchased or purified by standard techniques without special instructions. ¹H NMR and ¹³C NMR spectra were measured on a 300 MHz or 500 MHz Bruker spectrometer, using CDCl₃ as the solvent with tetramethylsilane (TMS) as the internal standard at room temperature. Chemical shifts are given in δ relative to TMS, the coupling constants *J* are given in Hz. All reactions were conducted under air atmosphere. Column chromatography was performed using EM Silica gel 60 (300-400 mesh). All products are known compounds and identified by comparison with authentic samples. Analytical data and spectra (¹H and ¹³C NMR) of all compounds are supplied in the Supporting Information.

2. General procedure

2.1 Typical Experimental Procedure for the ligand-free copper-catalyzed coupling of nitroarenes with arylboronic acids:

Under air atmosphere, a Schlenk tube was charged with nitroarenes (0.6 mmol), arylboronic acids (0.3 mmol), nano CuO (5 mol%) or Cu(OAc)₂ (5 mol%), Oxone (1 equvi) and Cs₂CO₃ (0.9 mmol) in 3 mL of DMF at room temperature. After that, the mixture was stirred constantly at 100 °C (oil bath temperature) for 48 h. After the completion of the reaction, as monitored by TLC and GC-MS analysis, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and washed with brine. The aqueous phase was re-extracted with ethyl acetate. The combined organic extracts were dried over Na₂SO₄ and concentrated under vacuum, and the resulting residue was purified by silica gel column chromatography to afford the desired product **3**.

2.2 Screening Optimal Conditions

	0 ₂ N-	HO + PhB(OH)	ECu], additive base, solvent PhO CHO				
	1a	2a		38	a		
Entry	Cu sources	Base	Solvent	Additive	Yield (%) ^b		
1	$Cu(OAc)_2$	Na ₂ CO ₃	DMF	-	27		
2	$Cu(OAc)_2$	K_2CO_3	DMF	-	46		
3	$Cu(OAc)_2$	CsOAc	DMF	-	34		
4	$Cu(OAc)_2$	CsF	DMF	-	29		
5	$Cu(OAc)_2$	LiF	DMF	-	28		
6	$Cu(OAc)_2$	NaOH	DMF	-	14		
7	$Cu(OAc)_2$	K ₃ PO ₄	DMF	-	trace		
8	$Cu(OAc)_2$	DABCO	DMF	-	trace		
9	$Cu(OAc)_2$	Cs_2CO_3	CH_2Cl_2	-	trace		
10	$Cu(OAc)_2$	Cs_2CO_3	THF	-	trace		
11	$Cu(OAc)_2$	Cs_2CO_3	toluene	-	trace		
12	$Cu(OAc)_2$	Cs_2CO_3	xylene	-	trace		
13	$Cu(OAc)_2$	Cs_2CO_3	PhCl	-	trace		
14	$Cu(OAc)_2$	Cs_2CO_3	CH ₃ CN	-	trace		

Table S1 Screening the optimal conditions^a

^{*a*}Reaction conditions: *p*-nitrobenzaldehyde (0.6 mmol), phenylboronic acid (0.3 mmol), Cu source (5 mol%), base (3 equiv), additive (1 equiv) and solvent (3 ml), air, 100 $^{\circ}$ C, 48 h. ^{*b*}Isolated yield.

2.3 Reaction of 4-nitrobenzaldehyde with phenols

Table S2 Reaction of 4-nitrobenzaldehyde with phenols^a

	O ₂ N-CHO + 1a	ArOH 5	CuO, Oxone Cs ₂ CO ₃ , DMF	ArO-CHO 3	
Entry	ArOH (5)		Product	Yield (%) ^b	
1	PhOH		3 a	86	
2	<i>p</i> -(Me)C ₆ H ₄ OH		3b	88	
3	o-(Me)C ₆ H ₄ OH		3d	85	
4	<i>p</i> -(OMe)C ₆ H ₄ OH		3e	89	
5	$p-(F)C_6H_4OH$		3 g	71	
6	$p-(Cl)C_6H_4OH$		3h	84	

^{*a*}Reaction conditions: **1a** (0.6 mmol), **5** (0.3 mmol), nano CuO (5 mol%), Cs₂CO₃ (3 equiv), oxone (1 equiv) and DMF (3 ml), air, 100 °C, 48 h. ^{*b*}Isolated yield.

3. The ¹⁸O-labeled Experiments Determined by GC-MS and HRMS Analysis

3.1 The reaction of 1a with 2a in the presence of $^{18}OH_2$

When the reaction was carried out in dry DMF using 5 equiv of ${}^{18}\text{OH}_2$, the mass spectroscopy (both EI and ESI) revealed that isolated **3a** includes one ${}^{18}\text{O}$ atom ([${}^{18}\text{O}$]-**3a**) in 72% yield (Eq. 1). The ${}^{18}\text{O}$ -labeled experiments determined by GC-MS (**Figure S1**) and ESI analysis (**Figure S3**).

Figure S1. The ¹⁸O-labeled Experiments Determined by GC-MS Analysis.

Chemical Formula: C₁₃H₁₀O¹⁸O Molecular Weigth: 200

100.0												9				
75.0																
73.0																
50.0	e1				116		41				197					
25.0	1		7													
		. 65					142		169			1				
0.0	40 50		- 14 /8 848	90 100 1		3	40 150	10		180 1	90	202 206 213	220 230	240	246 251	260

[MS Spectrum]			55.60	705 0.0	6	73.05	4910	0.39
# of Pea	ks 324	ļ	56.65	1226	0.10	74.05	49237	3.90
Raw Spo	ectrum 11.	883 (scan :	57.55	19228	1.52	75.05	45816	3.63
947)			58.55	652 0.0	5	76.05	63906	5.07
Backgro	ound No		61.05	6053	0.48	77.05	415044	32.91
Backgro	ound Spect	rum	62.05	26348	2.09	78.05	30159	2.39
Base Pe	ak m/z	198.95	63.05	95091	7.54	79.05	4019	0.32
(Inten : 1,261,048)		64.05	50811	4.03	80.10	353 0.03		
m/z Ab	solute	Intensity	65.05	96535	7.66	81.10	351 0.0	3
Rel	lative Inter	nsity	66.05	24729	1.96	82.10	150 0.0	1
50.05	141684	11.24	67.05	2197	0.17	83.15	599 0.03	5
51.05	484730	38.44	68.05	3456	0.27	84.10	7729	0.61
52.05	25351	2.01	69.15	10111	0.80	85.05	4228	0.34
53.05	8692	0.69	70.05	18814	1.49	86.00	4708	0.37
54.05	919 0.0	7	71.05	7893	0.63	87.00	6870	0.54
55.05	8021	0.64	72.00	11190.0	19	88.05	6191	0.49

89.05	28742	2.28	133.00	246 0.02		178.00	82 0.0	1
90.05	4030	0.32	134.00	201 0.02		179.00	146 0.0	1
91.05	22317	1.77	135.00	209 0.02		180.00	89 0.0	1
92.05	23734	1.88	136.00	154 0.01		180.95	11810.0	9
93.05	21168	1.68	137.05	1835	0.15	181.90	332 0.0	3
94.05	40694	3.23	138.15	3584	0.28	182.95	596 0.0	5
95.05	3329	0.26	139.05	96814	7.68	184.00	326 0.0	3
96.05	960 0.08		140.15	25242	2.00	185.00	188 0.0	1
97.55	1577	0.13	141.10	679991	53.92	186.00	50 0.0	0
98.55	18967	1.50	142.10	103487	8.21	187.00	49 0.0	0
99.50	33708	2.67	143.10	71190.56		188.00	34 0.0	0
100.45	2868	0.23	144.00	1054	0.08	189.00	22 0.0	0
101.05	2728	0.22	145.00	450 0.04		191.00	57 0.0	0
102.05	9404	0.75	146.00	244 0.02		192.00	14 0.0	0
103.05	3436	0.27	147.00	191 0.02		193.00	42 0.0	0
104.05	3146	0.25	148.00	105 0.01		194.90	1794	0.14
105.05	2668	0.21	149.00	302 0.02		195.95	2587	0.21
106.05	4827	0.38	150.00	1452	0.12	196.95	621113	49.25
107.05	2049	0.16	151.05	7354	0.58	197.95	584765	46.37
108.10	343 0.03		152.05	4625	0.37	198.95	1261048	8 100.00
109.10	412 0.03		153.00	2140	0.17	199.95	1104162	2 87.56
110.00	863 0.07		154.00	738 0.06		200.95	156321	12.40
111.05	1049	0.08	155.00	1001	0.08	201.95	22697	1.80
112.10	599 0.05		156.00	247 0.02		202.95	2146	0.17
113.05	11991	0.95	157.00	418 0.03		203.90	220 0.0	2
114.15	14260	1.13	158.00	188 0.01		204.95	483 0.0	4
115.05	485712	38.52	159.00	119 0.01		206.00	71 0.0	1
116.10	50103	3.97	160.00	76 0.01		207.00	58 0.0	0
117.05	2451	0.19	161.00	127 0.01		208.00	34 0.0	0
118.05	740 0.06		162.00	82 0.01		209.00	44 0.0	0
119.05	552 0.04		163.00	90 0.01		210.00	14 0.0	0
120.00	2895	0.23	164.00	98 0.01		213.00	24 0.0	0
121.00	11108	0.88	165.00	145 0.01		214.00	6 0.0	0
122.05	6347	0.50	167.00	4719	0.37	219.00	44 0.0	0
123.05	20482	1.62	168.00	41214	3.27	220.00	110 0.0	1
124.05	1945	0.15	169.00	87321	6.92	221.00	26 0.0	0
125.05	855 0.07		170.00	32745	2.60	231.00	3 0.0	0
126.05	3493	0.28	171.00	35695	2.83	232.00	16 0.0	0
127.05	2705	0.21	172.00	9700	0.77	246.00	13 0.0	0
128.05	2565	0.20	172.95	11110.09		251.00	16 0.0	0
129.05	1312	0.10	174.00	118 0.01		272.00	5 0.0	0
130.00	351 0.03		175.00	58 0.00	1	278.00	31 0.0	0
131.05	1259	0.10	176.00	54 0.00	1	281.00	29 0.0	0
132.00	242 0.02		177.00	108 0.01		294.00	5 0.0	0

Figure S2. GC-MS Analysis of 3a.

СНО

Chemical Formula: $C_{13}H_{10}O_2$ Molecular Weigth: 198

100.0				197. 1 <mark>98</mark>				
50.0								
25.0								
0.0 50.0	510 <u>66 70 118 84 8292</u> 75.0	98102 113 121 126 131 1371 100.0 125.0	169 150.0 17	181 189 205 5.0 200.0	220 232 246 252 225.0 250.0	260 267 275 281 275.0	292.297 315.320 3 300.0 3	25 332 349 25.0 350.0
			71.95	1398	0.07	105.05	4098	0.20
[MS Spe	ctrum]		73.00	5815	0.28	106.00	498 0.02	
# of Peal	ks 414		74.00	55969	2.67	107.00	110 0.01	
Raw Spe	ctrum 11.8	392 (scan :	75.00	52209	2.49	108.00	98 0.00)
948)			76.00	74318	3.55	109.05	348 0.02	
Backgro	und No		77.00	489415	23.37	109.95	838 0.04	ŀ
Backgro	und Spect	rum	78.00	35586	1.70	111.00	1010	0.05
Base Pea	ık m/z	196.95	79.00	4610	0.22	112.05	667 0.03	
(Inten : 2	2,094,067)		80.00	271 0.01	l	113.05	12537	0.60
m/z Abs	solute	Intensity	81.00	86 0.00)	114.05	14898	0.71
Rela	ative Inter	nsity	82.00	90 0.00)	115.05	507509	24.24
50.00	171740	8.20	83.15	1070	0.05	116.05	52538	2.51
51.00	624054	29.80	84.05	12681	0.61	117.05	2663	0.13
52.00	34278	1.64	85.05	5327	0.25	118.05	832 0.04	ļ
52.95	14193	0.68	85.95	5607	0.27	119.05	1502	0.07
54.00	1319	0.06	87.00	8241	0.39	120.00	9953	0.48
55.00	10135	0.48	88.05	8051	0.38	121.00	39142	1.87
56.55	1772	0.08	89.00	36674	1.75	122.00	3686	0.18
57.50	35302	1.69	90.05	5261	0.25	123.00	433 0.02	2
58.45	1881	0.09	91.05	29773	1.42	124.00	52 0.00)
60.05	469 0.02	2	92.00	44686	2.13	125.00	572 0.03	6
61.00	8542	0.41	93.00	27866	1.33	126.00	3946	0.19
62.00	37338	1.78	94.00	39686	1.90	127.05	3299	0.16
63.00	130276	6.22	95.05	2628	0.13	128.05	3047	0.15
64.00	69449	3.32	96.00	177 0.01	l	129.05	19110.09)
65.00	125636	6.00	97.55	8023	0.38	130.00	476 0.02	2
66.00	32266	1.54	98.50	71798	3.43	131.00	1074	0.05
67.00	2737	0.13	99.45	5420	0.26	132.00	151 0.01	
68.00	3092	0.15	101.05	3082	0.15	133.00	166 0.01	
69.05	13038	0.62	102.00	11028	0.53	134.00	106 0.01	
70.00	25449	1.22	103.05	4454	0.21	135.00	175 0.01	
70.95	11319	0.54	104.00	8628	0.41	137.05	2137	0.10

S6

138.05	4474	0.21	184.90	89	0.00)	229.90	60	0.00
139.00	115342	5.51	185.90	58	0.00)	230.90	71	0.00
140.15	36446	1.74	186.90	42	0.00)	231.90	81	0.00
141.05	770650	36.80	187.90	29	0.00)	232.90	74	0.00
142.05	117808	5.63	188.90	60	0.00)	233.90	68	0.00
143.05	8655	0.41	189.90	18	0.00)	234.90	47	0.00
144.00	1017	0.05	190.90	55	0.00)	235.90	39	0.00
145.00	210 0.01		191.90	39	0.00)	236.90	39	0.00
146.00	76 0.00)	192.90	46	0.00)	237.90	39	0.00
147.00	47 0.00)	194.95	549	0	0.26	238.90	13	0.00
148.00	30 0.00)	196.05	334	63	1.60	239.90	34	0.00
150.00	1340	0.06	196.95	2094	4067	100.00	240.90	19	0.00
151.00	7766	0.37	197.95	183	5381	87.65	241.90	26	0.00
152.00	5071	0.24	198.95	2552	263	12.19	242.90	38	0.00
153.05	2150	0.10	199.95	242	71	1.16	243.90	30	0.00
154.00	641 0.03		200.95	174	1	0.08	244.90	52	0.00
155.00	1262	0.06	201.90	170	0.01		245.90	66	0.00
156.00	303 0.01		202.90	71	0.00)	246.90	63	0.00
157.00	106 0.01		203.90	90	0.00)	247.90	49	0.00
158.00	44 0.00)	204.90	343	0.02	2	248.90	34	0.00
159.00	63 0.00)	205.90	63	0.00)	249.90	62	0.00
160.00	29 0.00)	206.90	89	0.00)	250.90	70	0.00
161.00	31 0.00)	207.90	42	0.00)	251.90	76	0.00
162.00	65 0.00)	208.90	62	0.00)	252.90	76	0.00
163.00	18 0.00)	209.90	38	0.00)	253.90	11	0.00
164.00	46 0.00)	210.90	50	0.00)	254.90	26	0.00
165.00	111 0.01		211.90	33	0.00)	255.90	10	0.00
167.05	5447	0.26	212.90	38	0.00)	256.90	16	0.00
168.00	48766	2.33	213.90	26	0.00)	257.90	31	0.00
169.00	127695	6.10	214.90	55	0.00)	258.90	29	0.00
170.00	45022	2.15	215.90	33	0.00)	259.90	34	0.00
171.00	5386	0.26	216.90	60	0.00)	260.90	27	0.00
172.00	417 0.02		217.90	46	0.00)	261.90	26	0.00
173.00	81 0.00)	218.90	42	0.00)	262.90	38	0.00
174.00	62 0.00)	219.90	103	0.00)	263.90	26	0.00
175.00	41 0.00)	220.90	65	0.00)	264.90	54	0.00
176.00	29 0.00)	221.90	58	0.00)	265.90	81	0.00
177.00	118 0.01		222.90	31	0.00)	266.90	97	0.00
178.00	121 0.01		223.90	49	0.00)	269.90	47	0.00
179.00	146 0.01		224.90	34	0.00)	270.90	30	0.00
180.95	1933	0.09	225.90	31	0.00)	271.90	39	0.00
181.95	560 0.03		226.90	65	0.00)	272.90	36	0.00
182.90	313 0.01		227.90	41	0.00)	273.90	47	0.00
183.90	214 0.01		228.90	68	0.00)	274.90	52	0.00

Figure S3. The ¹⁸O-labeled Experiments Determined by HRMS (ESI) Analysis.

Chemical Formula: $C_{13}H_{10}O^{18}O$ Calcd. for $C_{13}H_{10}O^{18}O$ [M+H]⁺ 201.0796 Found: m/z 201.0804

S8

4. Analytical data for products

<u>4-Phenoxybenzaldehyde (**3a**)¹</u>: ¹H NMR (CDCl₃, 300 MHz) δ 7.05-7.11 (m, 4H), 7.23-7.25 (m, 1H), 7.39-7.45 (m, 2H), 7.83-7.86 (m, 2H), 9.92 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 117.6, 120.4, 124.9, 130.1, 131.3, 131.9, 155.1, 163.2, 190.7.

<u>4-(*p*-Tolyloxy)benzaldehyde (**3b**)²</u>: ¹H NMR (CDCl₃, 300 MHz) δ 2.37 (s, 3H), 6.97-7.05 (m, 4H), 7.21 (d, J = 8.6 Hz, 2H), 7.81-7.84 (m, 2H), 9.91 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 20.8, 117.2, 120.4, 130.6, 131.0, 131.9, 134.7, 152.7, 163.7, 190.7.

<u>4-(*m*-Tolyloxy)benzaldehyde (**3c**)³</u>. ¹H NMR (CDCl₃, 500 MHz) δ 2.36 (s, 3H), 6.87-7.05 (m, 5H), 7.28 (t, *J* = 7.8 Hz, 1H), 7.82-7.85 (m, 2H), 9.91 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 21.3, 117.3, 117.5, 121.0, 125.7, 129.8, 131.1, 131.9, 140.4, 155.0, 163.3, 190.7.

<u>4-(*o*-Tolyloxy)benzaldehyde (**3d**)⁴</u>: ¹H NMR (CDCl₃, 500 MHz) δ 2.18 (s, 3H), 6.95-7.02 (m, 2H), 7.18 (d, *J* = 7.0 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.83 (d, *J* = 8.5 Hz, 2H), 9.90 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 16.0, 116.4, 121.1, 125.5, 127.5, 130.6, 130.9, 131.9, 132.0, 152.7, 163.4, 190.7.

¹ Liu, Y. H.; Li, G.; Yang, L. M. Tetrahedron. Lett. 2009, 50, 343.

² Koyama, H.; Julia K.; Boueres, J. K. *Bioorg. Med. Chem. Lett.* **2003**, 13, 1801.

³ Shimizu, K.; Kizawa, K.; Yoshimoto, T.; Imamura, J. Sekiyu Gakkaishi 1982, 25, 7.

⁴ Hu, T. J.; Schulz, T.; Torborg, C.; Chen, X. R.; Wang, J.; Beller, M.; Huang, J. Chem. Commun. 2009, 47, 7330.

<u>4-(4-Methoxyphenoxy)benzaldehyde</u> (**3e**)⁵: ¹H NMR (CDCl₃, 300 MHz) δ 3.82 (s 3H), 6.91-7.04 (m, 6H), 7.81 (d, *J* = 8.6 Hz, 2H). 9.89 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 55.6, 115.1, 116.7, 121.8, 130.8, 131.9, 148.1, 156.8, 164.1, 190.7.

<u>4-(2-Methoxyphenoxy)benzaldehyde</u> (**3f**)⁶: ¹H NMR (CDCl₃, 500 MHz) δ 3.78 (s, 3H), 6.97-7.05 (m, 4H), 7.09-7.10 (m, 1H), 7.22-7.25 (m, 1H), 7.80-7.82 (m, 2H), 9.89 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 55.8, 113.0, 116.2, 121.3, 122.5, 126.4, 130.8, 131.8, 142.8, 151.7, 163.5, 190.7.

<u>4-(4-Fluorophenoxy)benzaldehyde</u> (**3g**)⁵: ¹H NM R(CDCl₃, 300 MHz) δ 7.01-7.14 (m, 6H), 7.84 (d, *J* = 8.7 Hz, 2H), 9.92 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 116.8 (d, ²*J*_{C-F} = 23.4 Hz, 1C), 117.12, 122.0 (d, ³*J*_{C-F} = 8.8Hz, 1C), 131.2, 132, 150.7 (d, ⁴*J*_{C-F} = 3.8 Hz, 1C), 159.7 (d, ¹*J*_{C-F} = 242.5 Hz, 1C), 163.3, 190.8.

<u>4-(4-Chlorophenoxy)benzaldehyde (**3h**)⁵</u>: ¹H NMR (CDCl₃, 300 MHz) δ 7.01-7.07(m, 4H), 7.36-7.39 (m, 2H), 7.86 (d, *J*=8.7 Hz, 2H), 9.93 (s, 1H). ¹³C NMR (125 MHz) δ 117.7, 121.6, 130.1, 130.2, 131.6, 132.0, 153.8, 162.7, 190.6.

⁵ Zheng, X.; Ding, J.; Chen, J.; Gao, W.; Liu, M.; Wu, H. Org. Lett. 2011, 13, 1726.

⁶ Ungnade, H. E. J. Am. Chem. Soc. **1941**, 63, 2091.

<u>4-(4-Bromophenoxy)benzaldehyde (**3i**)⁷</u>: ¹H NMR (CDCl₃, 500 MHz) δ 6.95-7.07 (m, 4H), 7.49-7.52 (m, 2H), 7.83-7.86 (m, 2H), 9.92 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 117.6, 117.7, 122.0, 131.6, 132.0, 133.1, 154.3, 162.6, 190.7.

<u>4-(2-Bromophenoxy)benzaldehyde (**3**j)⁸</u>: ¹H NMR (CDCl₃, 500 MHz) δ 6.99-7.15 (m, 4H), 7.34-7.38 (m, 1H), 7.66-7.68 (m, 1H), 7.85 (d, *J*=8.7 Hz, 2H), 9.92 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 116.1, 116.9, 122.6, 126.7, 129.1, 131.5, 131.9, 134.2, 151.7, 162.4, 190.6.

<u>4-(Biphenyl-4-yloxy)benzaldehyde (**3k**)⁹</u>: ¹H NMR (CDCl₃, 500 MHz) δ 7.12-7.18 (m, 4H), 7.37 (t, *J*=7.4 Hz, 1H), 7.45-7.48 (m, 2H), 7.59-7.65 (m, 4H), 7.86-7.89 (m, 2H), 9.94 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 117.7, 120.6, 126.9, 127.3, 128.7, 128.8, 131.4, 131.9, 138.0, 140.1, 154.6, 163.1, 190.7.

<u>4-(3-Nitrophenoxy)benzaldehyde</u> (**31**)¹⁰: ¹H NMR (CDCl₃, 500 MHz) δ 7.12-7.14 (m, 2H), 7.40-7.42 (m, 1H), 7.58 (t, *J*=8.2 Hz, 1H), 7.89-8.06 (m, 4H), 9.97 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 114.7, 118.7, 119.3, 125.7, 130.8, 132.1, 132.5, 149.4, 156.4, 161.3, 190.5.

4-(4-(Trifluoromethyl)phenoxy)benzaldehyde⁵ (3m): ¹H NMR (CDCl₃, 500 MHz) δ

⁷ Tu, N.; Link, J. T.; Sorensen, B. K. Bioorg. Med. Chem. Lett. 2004, 14, 4179.

⁸ Ames, D. E.; Opalko, A. *Tetrahedron* **1984**, 40, 1919.

⁹ Igarashi, S.; Kimura, T.; Naito, R.; Hara, H.; Fujii, M.; Koutoku, H.; Oritani, H.; Mase, T. *Chem. Pharm. Bull.* **1999**, 47, 1073.

¹⁰ Marin, L. Cozan, V.; Bruma, M. *Revue Roumaine de Chimie* **2005**, 50, 649.

7.12-7.17 (m, 4H), 7.66 (d, J = 8.6 Hz, 2H), 7.89-7.91 (m, 2H). 9.96 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 118.6, 119.7, 122.8, 125.0, 126.5, 127.4, 127.5, 127.5, 127.5, 127.5, 1302.0, 132.1, 158.3, 161.6, 190.7.

<u>4-(4-Formylphenoxy)benzonitrile (**3n**)¹¹</u>: ¹H NMR (CDCl₃, 500 MHz) δ 7.11-7.16 (m, 4H), 7.67 (d, *J*=8.2 Hz, 2H), 7.92 (d, *J*=8.1 Hz, 2H), 9.97 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 107.7, 118.3, 119.4, 119.6, 132.0, 132.8, 134.4, 159.6, 160.6, 190.4.

<u>4,4'-Oxydibenzaldehyde</u> (**30**)¹²: ¹H NMR (CDCl₃, 500 MHz) δ 7.17 (d, *J*=8.5 Hz, 4H), 7.92 (d, *J*=8.7 Hz, 4H), 9.97 (s, 2H). ¹³C NMR (CDCl₃, 125 MHz) δ 119.3, 132.0, 132.6, 161.0, 190.6.

<u>2-Phenoxybenzaldehyde (**3p**)¹³</u>: ¹H NMR(CDCl₃, 500 MHz) δ 6.90 (d, J = 8.3 Hz, 1H), 7.07 (d, J = 7.8 Hz, 2H), 7.17-7.52 (m, 5H), 7.93-7.95 (m, 1H), 10.52 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 118.4, 119.4, 123.3, 124.3, 126.9, 128.4, 130.1, 135.7, 156.4, 160.0, 189.4.

<u>1-(4-Phenoxyphenyl)ethanone</u> $(3q)^5$: ¹H NMR (CDCl₃, 500 MHz) δ 2.57 (s, 3H), 7.00 (d, J = 8.5Hz, 2H), 7.07 (d, J = 8.5Hz, 2H), 7.20-7.22 (m, 1H), 7.38-7.41(m, 2H),

¹¹ Lazo, J. S.; Nunes, R.; Skoko, J. J.; Queiroz de Oliveira, P. E.; Vogt, A.; Wipf, P. *Bioorg. Med. Chem.* **2006**, 14, 5643.

¹² Sugimura, R.; Qiao, K.; Tomida, D.; Yokoyama, C. Catal. Commun. 2007, 8, 770.

¹³ Fish, P. V.; Ryckmans, T.; Stobie, A.; Wakenhut, F. *Bioorg. Med. Chem. Lett.* **2008**, 18, 1795.

7.94 (d, *J* = 8.5 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) δ 26.4, 117.2, 120.2, 124.6, 130.0, 130.6, 131.9, 155.5, 162.0, 196.7.

<u>(4-Phenoxyphenyl)(phenyl)methanone</u> (**3r**)¹⁴: ¹H NMR (CDCl₃, 500 MHz) δ 7.02-7.05 (m, 2H), 7.10 (d, *J* = 7.7Hz, 2H), 7.20 (t, *J* = 7.5Hz, 1H), 7.39-7.42 (m, 2H), 7.46-7.49 (m, 2H), 7.57 (t, *J* = 7.4Hz, 1H), 7.78-7.84 (m, 4H). ¹³C NMR (CDCl₃, 125 MHz) δ 117.1, 120.1, 124.5, 128.2, 129.7, 130.0, 131.9, 132.0, 132.4, 137.9, 155.5, 161.5, 195.3.

<u>4-Phenoxybenzonitrile (3s)</u>⁵: ¹H NMR (CDCl₃, 500 MHz) δ 6.98-7.01 (m, 2H), 7.05-7.07 (m, 2H), 7.23 (t, *J* = 7.5Hz, 1H), 7.39-7.43 (m, 2H), 7.57-7.60 (m, 2H). ¹³C NMR (CDCl₃, 125 MHz) δ 105.8, 117.8, 118.7, 120.3, 125.1, 130.1, 134.0, 154.7, 161.6.

<u>2-Chloro-4-phenoxybenzonitrile (**3t**)¹⁵</u>: ¹H NMR (CDCl₃, 500 MHz) δ 6.90-6.92 (m, 1H), 7.03-7.08 (m, 3H), 7.26-7.29 (m, 1H), 7.42-7.46 (m, 2H), 7.58 (d, *J* = 8.7 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 106.7, 116.0, 118.4, 120.5, 125.7, 130.4, 135.2, 138.4, 154.1, 162.2.

¹⁴ Liu, Y.; Li, G; Yang, L. *Ttrahedron Lett.* 2009, 50, 343.

¹⁵ Patel, K. M. *Patent* EP 659047 (**1993**).

<u>Methyl 4-phenoxybenzoate</u> (**3u**)¹⁶: ¹H NMR (CDCl₃, 500 MHz) δ 3.90 (s, 3H), 6.98 (d, J = 8.8 Hz, 2H), 7.06 (d, J = 7.9 Hz, 2H), 7.19 (t, J = 7.4 Hz, 1H), 7.37-7.41 (m, 2H), 8.00 (d, J = 8.8 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) δ 52.0, 117.3, 120.1, 124.5, 130.0, 131.7, 155.6, 161.8, 166.6.

<u>1-Phenoxy-4-(trifluoromethyl)benzene</u> $(3v)^{17}$: ¹H NMR (CDCl₃, 500 MHz) δ 7.04-7.07 (m, 4H), 7.20 (d, J = 7.5 Hz, 1H), 7.38-7.41 (m, 2H), 7.57 (d, J = 8.5 Hz , 2H). ¹³C NMR (CDCl₃, 125 MHz) δ 117.9, 119.9, 123.1, 124.5, 124.7, 125.0, 125.3, 127.0, 127.1, 127.1, 127.2, 130.1, 155.7, 160.5.

<u>1-Nitro-4-phenoxybenzene</u> $(3w)^{18}$: ¹H NMR (CDCl₃, 500 MHz) δ 6.99-7.10 (m, 4H), 7.26 (t, *J* = 7.5 Hz, 1H), 7.41-7.45 (m, 2H), 8.18-8.21 (m, 2H). ¹³C NMR (CDCl₃, 125 MHz) δ 117.1, 120.5, 125.4, 125.9, 130.3, 142.6, 154.7, 163.3.

<u>2-Methyl-4-phenoxypyridine</u> $(3x)^{19}$: ¹H NMR (CDCl₃, 500 MHz) δ 2.48 (s, 3H), 6.63-6.68 (m, 2H), 7.07 (d, J = 7.7 Hz, 2H), 7.23 (t, J = 7.5 Hz, 1H), 7.39-7.42 (m, 2H), 8.32 (d, J = 5.7 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 24.5, 109.6, 111.3, 120.7, 125.2, 130.1, 150.6, 154.2, 160.4, 165.1.

¹⁶ Hu, T.; Schulz, T.; Torborg, C.; Chen, X.; Wang, J.; Beller, M.; Huang, J. Chem. Commun. 2009, 7330.

¹⁷ Liu, T.; Shen, Q. Org. Lett. 2011, 13, 2342.

¹⁸ Tlili, A.; Monnier, F.; Taillefer, M. *Chem. Eur. J.* **2010**, 16, 12299.

¹⁹ Fujikawa, K.; Kondo, K.; Yokomichi, I.; Kimura, F.; Haga, T.; Nishiyama, R. Agric. Bio. Chem. 1970, 34, 68.

5. Copies of product ¹H NMR and ¹³C NMR

Figure S4. ¹H NMR of 3a (300 MHz, CDCl₃) and ¹³C NMR of 3a (125 MHz, CDCl₃).

Figure S5. ¹H NMR of 3b (300 MHz, CDCl₃) and ¹³C NMR of 3b (125 MHz, CDCl₃).

Figure S7. ¹H NMR of 3d (500 MHz, CDCl₃) and ¹³C NMR of 3d (125 MHz, CDCl₃).

Figure S8. ¹H NMR of 3e (300 MHz, CDCl₃) and ¹³C NMR of 3e (125 MHz, CDCl₃).

Figure S9. ¹H NMR of 3f (500 MHz, CDCl₃) and ¹³C NMR of 3f (125 MHz, CDCl₃).

Figure S10. 1 H NMR of 3g (300 MHz, CDCl₃) and 13 C NMR of 3g (125 MHz, CDCl₃).

Figure S11. ¹H NMR of 3h (300 MHz, CDCl₃) and ¹³C NMR of 3h (125 MHz, CDCl₃).

Figure S12. ¹H NMR of 3i (500 MHz, CDCl₃) and ¹³C NMR of 3i (125 MHz, CDCl₃).

Figure S16. ¹H NMR of 3m (500 MHz, CDCl₃) and ¹³C NMR of 3m (125 MHz, CDCl₃).

Figure 20. ¹H NMR of 3q (500 MHz, CDCl₃) and ¹³C NMR of 3q (125 MHz, CDCl₃).

Figure S21. ¹H NMR of 3r (500 MHz, CDCl₃) and ¹³C NMR of 3r (125 MHz, CDCl₃).

Figure S22. ¹H NMR of 3s (500 MHz, CDCl₃) and ¹³C NMR of 3s (125 MHz, CDCl₃).

Figure S23. ¹H NMR of 3t (500 MHz, CDCl₃) and ¹³C NMR of 3t (125 MHz, CDCl₃).

Figure S24. 1 H NMR of 3u (500 MHz, CDCl₃) and 13 C NMR of 3u (125 MHz, CDCl₃).

Figure S25. ¹H NMR of 3v (500 MHz, CDCl₃) and ¹³C NMR of 3v (125 MHz, CDCl₃).

Figure S26. ¹H NMR of 3w (500 MHz, CDCl₃) and ¹³C NMR of 3w (125 MHz, CDCl₃).

Figure S27. ¹H NMR of 3x (500 MHz, CDCl₃) and ¹³C NMR of 3x (125 MHz, CDCl₃).