Supporting Information

An aqueous and recyclable copper(I)-catalyzed route to α-sulfenylated carbonyl compounds from propargylic alcohols and aryl thiols

Rahul A. Watile,^a Srijit Biswas,^a and Joseph S. M. Samec^{*a}

^a Dept. of Chemistry, BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden, Fax: (+) 018-471 3818; E-mail addresses: <u>joseph.samec@kemi.uu.se</u>

Contents	Page No.
A. Checklist of characterization data of all compounds	2–4
B. General considerations	4
C. Table of solvent selection and optimization of reaction time	5
D. Experimental procedures and spectroscopic data of all products	5–14
E. Isolation and characterization of intermediate 4	14–15
F. Cu-catalyzed conversion of intermediate 4 to product 3d in presence of 2a	15
G. Large scale experiment	15–16
H. Copies of NMR spectra of all products	17–37
I. Copies of NMR spectra of isolated intermediate 4	38–39
J. References	40

Sr. No.	Compounds	Known / Unknown	IR	¹ H NMR	¹³ C NMR	HRMS
1	Ph S Ph	Known	_	\checkmark	\checkmark	-
2	Ph S Ph	Unknown	\checkmark	\checkmark	V	
3	Ph S Pr ⁱ S Ph	Known	\checkmark	\checkmark	V	V
4	Ph B S Ph	Known	_	V	V	_
5	O S Ph	Unknown	\checkmark	\checkmark	\checkmark	V
6	Ph 3f S Ph	Unknown	\checkmark		V	V
7	CI S Ph	Unknown	\checkmark	\checkmark	\checkmark	\checkmark
8	O S 3h S Ph	Unknown	\checkmark	V	V	V
9	3i S Ph	Unknown	\checkmark	\checkmark	\checkmark	V
10	F ₃ C 3j	Unknown		\checkmark	\checkmark	
11	G G O O O O O O O O H S Ph	Unknown	\checkmark	\checkmark	\checkmark	\checkmark

A. Checklist of characterization data of all compounds.

12	O 31 O O	Unknown		\checkmark	V	\checkmark
13	Ph 3m ^S Br	Known	-	V	\checkmark	-
14	Ph 3n S Cl	Unknown	\checkmark	V	~	\checkmark
15	Ph 30 S F	Unknown	\checkmark	V	\checkmark	~
16	Ph 3p S	Unknown	\checkmark	V	\checkmark	\checkmark
17	Ph 3q S 0	Known		V	\checkmark	-
18	3r S _{Ph}	Known	-	V	\checkmark	_
19	O → 3s S _{Ph}	Known	-	\checkmark	\checkmark	_
20	3t S _{Ph}	Unknown	\checkmark	V	1	1
21	Ph 3u S Ph	Unknown	\checkmark	V		V

22	H OH Ph 4 (Z) S Ph	Known	_	\checkmark	\checkmark	-
23	Ph OH H J S Ph	Known	-	\checkmark	\checkmark	-

B. General considerations.

¹H and ²H NMR spectra were recorded with a Varian 300 (300 MHz), Varian 400 (400 MHz) and Varian 500 (500 MHz) spectrometer as solutions in CDCl₃. Chemical shifts are expressed in parts per million (ppm, δ) and are referenced to CHCl₃ (δ = 7.26 ppm) as an internal standard. All coupling constants are absolute values and are expressed in Hz. The description of the signals include: s = singlet, d = doublet, t = triplet, m = multiplet and dd = doublet of doublets, at = apparent triplet. 13 C NMR spectra were recorded with a Varian 300 (75 MHz) and Varian 400 (100 MHz) spectrometer as solutions in CDCl₃ with complete proton decoupling. Chemical shifts are expressed in parts per million (ppm, δ) and are referenced to $CDCl_3$ (δ = 77.0 ppm) as an internal standard. IR spectra were recorded by a Perkin Elmer FT-IR Spectrometer. High-Resolution Mass Spectra (HRMS) were performed with a micrOTOF (Bruker) spectrometer by Na-formate. The molecular fragments are quoted as the relation between mass and charge (m/z). The routine monitoring of reactions was performed with silica gel pre-coated Al plate, which was analyzed with iodine and/or uv light respectively. Solvents, reagents and chemicals were purchased from Aldrich. All reactions were executed with oven-dried glassware under nitrogen atmosphere. Solvent 1,2-Dichloroethane was dried by distilling over anhydrous phosphorus pentoxide prior to use. NaBD₄ 98 atom % D 90% (CP) purchased from Aldrich was used for reduction of aldehyde or ketone to prepare alcohols having deuterium at the hydriodic position.

$Ph = - OH + Ph - SH = \frac{2 \mod \% Cul}{Solvent, reflux} Ph = \frac{O}{3a} S_{Ph}$					
Entry	Solvent	Time (h)	Yield $(\%)^b$		
1	Water	48	97		
2	Acetonitrile	48	15		
3	Toluene	48	40		
4	Nitromethane	48	60		
5	1,2-Dichloroethane	48	90		
6	Water	60	97		
7	Water	36	82		

C. Table of solvent selection and optimization of reaction time.^a

^{*a*} Reaction conditions: **1a** (1 mmol), **2a** (1.5 mmol) and CuI (2 mol%), at reflux in 2.0 mL solvent. ^{*b*} Conversion based on ¹H NMR analysis.

D. Experimental procedures for the synthesis of all compounds including their spectroscopic data are provided below.

4-Phenyl-3-(phenylthio)butan-2-one (3a):¹

At first, the catalyst CuI (4 mg, 2 mol%) was weighed and transferred to a 5 mL vial containing a magnet under nitrogen atmosphere. The cap of the vial was closed tightly. 2.0 mL of degassed water followed by alcohol **1a** (145 μ L, 1 mmol) and benzenethiol **2a** (154 μ L, 1.5 mmol) were added to the vial by syringe and was stirred using a magnetic stirrer at reflux for 24 h. After allowing the mixture to cool to room temperature, the reaction mixture was extracted with ethyl acetate (3 × 15 mL). The combined organic phase was washed with water and brine, dried with anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica-gel (100–200 mess) column chromatography using 3% (*v*/*v*) ethyl acetate / pentane solution to afford the desired product **3a** (240 mg, 0.94 mmol, 94%). ¹H NMR (300 MHz, CDCl₃): δ = 2.20 (s, 3 H, H-1), 3.00 (dd, *J* = 6.9 Hz, 14.4 Hz, 1 H, H-4), 3.19 (dd, *J* = 8.4 Hz, 14.1 Hz, 1 H, H-4), 3.90 (dd, *J* = 6.9 Hz, 8.4 Hz, 1 H, H-3), 7.18–7.37

(m, 10 H, H-arom) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 28.1, 36.9, 59.0, 127.1, 128.5, 128.8, 129.4, 133.0, 133.3, 138.3, 204.5 ppm.

1-Phenyl-2-(phenylthio)pentan-3-one (3b):

Alcohol **1b** (120 µL, 1 mmol), benzenethiol **2a** (154 µL, 1.5 mmol) and the catalyst CuI (4 mg, 2 mol%) in water (2.5 mL) were treated as described for **3a** to obtain **3b** as a yellowish oil (248 mg, 0.92 mmol, 92%). IR (Neat): $\tilde{v} = 2962$, 1705, 1439, 690 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.00$ (t, J = 7.2 Hz, 3 H, H-1), 2.31–2.41 (m, 1 H, H-2), 2.60–2.68 (m, 1 H, H-2), 3.04 (dd, J = 6.4 Hz, 13.6 Hz, 1 H, H-5), 3.23 (dd, J = 8.8, 14 Hz, 1 H, H-5), 3.92- 3.96 (m, 1 H, H-4), 7.20–7.40 (m, 10 H, H-arom) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 7.8$, 34.1, 36.9, 57.8, 126.7, 127.5, 128.2, 128.5, 129.1, 132.8, 133.1, 138.2, 207.0 ppm. HRMS: calcd. for C₁₇H₁₈NaOS 293.0976; found 293.0971.

4-Methyl-1-phenyl-2-(phenylthio)pentan-3-one (3c):¹

Alcohol **1c** (128 µL, 1 mmol), benzenethiol **2a** (154 µL, 1.5 mmol) and the catalyst CuI (4 mg, 2 mol%) in water (2.5 mL) were treated as described for **3a** to obtain **3c** as a yellowish oil (244 mg, 0.86 mmol, 86%). IR (Neat): $\tilde{v} = 2969$, 1707, 1439, 699 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.76$ (d, J = 6.9 Hz, 3 H, H-5), 1.04 (d, J = 6.7 Hz, 3 H, CH₃), 2.70–2.79 (m, 1 H, H-4), 3.00 (dd, J = 5.7 Hz, 13.8 Hz, 1 H, H-1), 3.22 (dd, J = 9.6 Hz, 13.8 Hz, 1 H, H-1), 3.97 22 (dd, J = 5.7 Hz, 9.6 Hz, 1 H, H-2), 7.42–7.38 (m, 2 H, H-arom), 7.14–7.35 (m, 8 H, H-arom) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 17.8$, 18.3, 37.3, 39.3, 56.5, 126.5, 128.3, 129.0, 129.2, 132.8, 133.6, 138.5, 208.7 ppm. HRMS: calcd. for C₁₈H₂₀OSNa 307.1133; found 307.1115.

3-Phenyl-2-(phenylthio)propanal (3d):¹

Alcohol **1d** (125 µL, 1 mmol), benzenethiol **2a** (154 µL, 1.5 mmol) and the catalyst CuI (4 mg, 2 mol%) in water (2.5 mL) were treated as described for **3a** to obtain **3d** as a reddish brown oil (232 mg, 0.96 mmol, 96%). ¹H NMR (300 MHz, CDCl₃): δ = 3.00 (dd, *J* = 6.9 Hz, 14.4 Hz, 1 H, H-3), 3.22 (dd, *J* = 8.1 Hz, 14.4 Hz, 1 H, H-3), 3.81–3.87 (m, 1 H, H-2), 7.23–7.41 (m, 10 H, H-arom), 9.50 (d, *J* = 3.6 Hz, 1 H, H-1) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 34.4, 58.1, 127.1, 128.6, 128.8, 129.3, 129.3, 131.6, 133.4, 137.3, 194.2 ppm.

3-(Phenylthio)-4-(p-tolyl)butan-2-one (3e):

Alcohol **1e** (160 mg, 1 mmol), benzenethiol **2a** (154 µL, 1.5 mmol) and the catalyst CuI (4 mg, 2 mol%) in water (2.5 mL) were treated as described for **3a** to obtain **3e** as a yellowish oil (224 mg, 0.83 mmol, 83%). IR (Neat): $\tilde{v} = 2919$, 1708, 1438, 805, 689 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.22$ (s, 3 H, H-1), 2.34 (s, 3 H, H-methyl), 2.30 (dd, J = 6.8 Hz, 14.4 Hz, 1 H, H-4), 3.17 (dd, J = 8.8 Hz, 14.1 Hz, 1 H, H-4), 3.92 (t, J = 6.9 Hz, 1 H, H-3), 7.11–7.34 (m, 9 H, H-arom) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 21.0$, 27.7, 36.2, 58.8, 128.1, 128.9, 129.1, 129.2, 132.8, 132.8, 134.8, 136.3, 204.4 ppm. HRMS: calcd. for C₁₇H₁₈NaOS 293.0976; found 293.0971.

4-([1,1'-Biphenyl]-4-yl)-3-(phenylthio)butan-2-one (3f):

Alcohol **1f** (222 mg, 1 mmol), benzenethiol **2a** (154 µL, 1.5 mmol) and the catalyst CuI (4 mg, 2 mol%) in water (2.5 mL) were treated as described for **3a** to obtain **3f** as a reddish brown oil (299 mg, 0.90 mmol, 90%). IR (Neat): $\tilde{v} = 3053$, 3031, 1707, 1486, 754, 687 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.28$ (s, 3 H, H-1), 3.09 (dd, J = 6.8 Hz, 14.4 Hz, 1 H, H-4), 3.27 (dd, J = 8.0 Hz, 16 Hz, 1 H, H-4), 3.97–4.00 (m, 1 H, H-3), 7.28–7.62 (m, 14 H, H-arom) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 27.8$, 36.2, 58.6, 126.1, 127.2, 127.1, 128.2, 128.7, 129.5, 132.6, 133, 137.0, 139.6, 140.7, 204.1ppm. HRMS: calcd. for C₂₂H₂₀NaOS 355.1133; found 355.1127.

4-(3, 4-Dichlorophenyl)-3-(phenylthio)butan-2-one (3g):

Alcohol **1g** (215mg, 1 mmol), benzenethiol **2a** (154 µL, 1.5 mmol) and the catalyst CuI (4 mg, 2 mol%) in water (2.5 mL) were treated as described for **3a** to obtain **3g** as a reddish brown oil (295 mg, 0.91 mmol, 91%). IR (Neat): $\tilde{v} = 3059$, 1705, 1471, 1132, 739, 689cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.28$ (s, 3 H, H-1), 2.92 (dd, J = 8 Hz, 16 Hz, 1 H, H-4), 3.14 (dd, J = 8.0 Hz, 16 Hz, 1 H, H-4), 3.82 (t, J = 7.2, 1 H, H-3), 7.28–7.37 (m, 8 H, H-arom) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 28$, 35.4, 58.1, 128.6, 128.6, 129.2, 130.3, 130.7, 131.0, 131.8, 132.3, 133.4, 138.4, 203.3 ppm. HRMS: calcd. for C₁₆H₁₄Cl₂NaOS 347.0040; found 347.0035.

4-(Naphthalen-1-yl)-3-(phenylthio)butan-2-one (3h):

Alcohol **1h** (196 mg, 1 mmol), benzenethiol **2a** (154 µL, 1.5 mmol) and the catalyst AuCl (5 mg, 2 mol%) in water (2.5 mL) were treated as described for **3a** to obtain **3**h as a reddish brown oil (287 mg, 0.95 mmol, 95%). IR (Neat): $\tilde{v} = 3055$, 1705, 1438, 1352, 775, 741 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.21$ (s, 3 H, H-1), 3.51 (dd, J = 5.6 Hz, 14.4 Hz, 1 H, H-4), 3.67 (dd, J = 8.8 Hz, 14.8 Hz, 1 H, H-4), 4.10–4.13 (m, 1 H, H-3), 7.28–7.55 (m, 9 H, H-arom), 7.77 (d, 1 H, H-arom), 7.88–7.95 (m, 2 H, H-arom) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 28.1$, 33.7, 57.7, 123.1, 125.3, 125.6, 126.2, 126.6, 127.6, 128.3, 128.7, 129.1, 131.6, 132.6, 133.2, 133.9, 204.2 ppm. HRMS: calcd. for C₂₀H₁₈NaOS 329.0976; found 329.0971.

4-(4-Acetylphenyl)-3-(phenylthio)butan-2-one (3i):

Alcohol **1i** (188 mg, 1 mmol), benzenethiol **2a** (154 µL, 1.5 mmol) and the catalyst CuI (4 mg, 2 mol%) in water (2.5 mL) were treated as described for **3a** to obtain **3i** as a yellowish oil (253 mg, 0.85 mmol, 85%). IR (Neat): $\tilde{v} = 2927$, 1679, 1266, 820, 729 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.24$ (s, 3 H, H-1), 2.58 (s, 3 H, H-COC<u>H</u>₃), 3.03 (dd, J = 6.9 Hz, 14.1 Hz, 1 H, H-4), 3.24 (dd, J = 8.1 Hz, 14.1 Hz, 1 H, H-4), 3.90 (dd, J = 6.9 Hz, 8.1 Hz, 1 H, H-3), 7.28–7.37 (m, 7 H, H-arom), 7.87–7.91 (m, 2 H, H-arom) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 26.5$, 27.9, 36.3, 58.0, 128.5, 128.5, 129.1, 129.3, 132.0, 133.3, 135.7, 143.7, 197.6, 203.5 ppm. HRMS: calcd. for C₁₈H₁₈NaO₂S 321.0925; found 321.0920.

2-(Phenylthio)-3-(4-(trifluoromethyl)phenyl)propanal (3j):

Alcohol **1j** (200 mg, 1 mmol), benzenethiol **2a** (154 µL, 1.5 mmol) and the catalyst CuI (4 mg, 2 mol%) in water (2.5 mL) were treated as described for **3a** to obtain **3j** as a reddish brown oil (218 mg, 0.90 mmol, 90%). IR (Neat): $\tilde{v} = 2988$, 2901, 1717, 1323, 775, 1066 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.01$ (dd, J = 67.6 Hz, 14.4 Hz, 1 H, H-3), 3.27 (dd, J = 7.6 Hz, 14.4 Hz, 1 H, H-3), 3.80–3.84 (m, 1 H, H-2), 7.28–7.50 (m, 7 H, H-arom), 7.53-7.60 (m, 2 H, H –arom) 9.55 (d, J = 2.8 Hz, 1 H, H-1) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 33.8$, 57.7, 125.4, 125.5, 125.5, 128.8, 129.3, 129.5, 130.7, 133.7, 141.4, 193.5 ppm. HRMS: calcd. for C₁₆H₁₃F₃NaOS 333.0537; found 333.0531.

3-(4-Acetylphenyl)-2-(phenylthio)propanel (3k):

Alcohol 1k (174 mg, 1 mmol), benzenethiol 2a (154 μ L, 1.5 mmol) and the catalyst CuI (4 mg, 2 mol%) in water (2.5 mL) were treated as described for 3a to obtain 3k as a yellowish

oil (207 mg, 0.73 mmol, 73%). IR (Neat): $\tilde{v} = 2959$, 2929, 1720, 1683, 1267, 1073, 745 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.60$ (s, 3 H, H-COC<u>H</u>₃), 3.01 (dd, J = 7.2 Hz, 14.4 Hz, 1 H, H-3), 3.26 (dd, J = 7.5 Hz, 14.4 Hz, 1 H, H-3), 3.80–3.86 (m, 1 H, H-2), 7.26–7.40 (m, 7 H, H-arom), 7.91–7.93 (m, 2 H, H-arom), 9.54 (d, J = 3.0 Hz, 1 H, H-1) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 26.6$, 34.0, 57.6, 128.7, 128.7, 128.8, 129.0, 129.3, 129.4, 133.6, 135.9, 142.9, 193.6, 197.6 ppm. HRMS: calcd. for C₁₇H₁₆NaO₂S 307.0769; found 307.0753.

3-(4-Methoxyphenyl)-2-(phenylthio)propanal (31):

Alcohol **1l** (162 mg, 1 mmol), benzenethiol **2a** (154 µL, 1.5 mmol) and the catalyst CuI (4 mg, 2 mol%) in water (2.5 mL) were treated as described for **3a** to obtain **3l** as a light brown oil (174 mg, 0.64 mmol, 64%). IR (Neat): $\tilde{v} = 2835$, 1715, 1511, 1246, 1032, 690 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.95$ (dd, J = 6.6 Hz, 14.4 Hz, 1 H, H-3), 3.15 (dd, J = 8.4 Hz, 14.7 Hz, 1 H, H-3), 3.77–3.83 (m, 4 H, H-2 and H-OC<u>H</u>₃), 6.87 (dd, J = 1.8 Hz, 6.6 Hz, 2 H, H-arom), 7.16 (dd, J = 1.8 Hz, 6.9 Hz, 2 H, H-arom), 7.28–7.32 (m, 3 H, H-arom), 7.38–7.41 (m, 2 H, H-arom), 9.48 (d, J = 3.9 Hz, 1 H, H-1) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 33.4$, 55.2, 58.1, 114.0, 128.3, 129.0, 129.1, 130.1, 131.5, 133.1, 158.5, 194.3 ppm. HRMS: calcd. for C₁₆H₁₆NaO₂S 295.0769; found 295.0770.

3-((4-Bromophenyl)thio)-4-phenylbutan-2-one (3m):²

Alcohol **1a** (145 µL, 1 mmol), 4-bromobenzenethiol **2b** (284 mg, 1.5 mmol) and the catalyst CuI (4 mg, 2 mol%) in water (2.5 mL) were treated as described for **3a** to obtain **3m** as a yellowish oil (248 mg, 0.74 mmol, 74%). IR (Neat): $\tilde{v} = 3027$, 2912, 1705, 1472, 813, 697 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): 2.23 (s, 3 H, H-1), $\delta = 3.00$ (dd, J = 6.8 Hz, 14.4 Hz, 1 H, H-4), 3.19 (dd, J = 8.0 Hz, 14 Hz, 1 H, H-4), 3.90 (t, J = 6.8, 1 H, H-3), 7.19–7.33 (m, 7 H, H-arom), 7.42–7.44 (m, 2 H, H-arom) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 27.6$, 36.5, 58.5, 122.6, 126.9, 128.5, 129.0, 131.6, 132.2, 134.5 137.7, 203.8 ppm.

3-((4-Chlorophenyl)thio)-4-phenylbutan-2-one (3n):

Alcohol **1a** (145 µL, 1 mmol), 4-chlorobenzenethiol **2c** (217 mg, 1.5 mmol) and the catalyst CuI (4 mg, 2 mol%) in water (2.5 mL) were treated as described for **3a** to obtain **3n** as a yellowish oil (223 mg, 0.77 mmol, 77%). IR (Neat): $\tilde{v} = 3415$, 3028, 1706, 1475, 1093, 716 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 2.26$ (s, 3 H, H-1), 3.02 (dd, J = 7 Hz, 14 Hz, 1 H, H-4), 3.20 (dd, J = 9.0 Hz, 14.5 Hz, 1 H, H-4), 3.92 (t, J = 6.5, 1 H, H-3), 7.23–7.36 (m, 9 H, H-arom) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 27.7$, 36.4, 58.6, 126.8, 128.6, 129.0, 129.3, 130.9, 134.4, 134.6, 137.7, 203.8 ppm. HRMS: calcd. for C₁₆H₁₅ClNaOS 313.0430; found 313.0424.

3-((4-Fluorophenyl)thio)-4-phenylbutan-2-one (30):

Alcohol **1a** (145 µL, 1 mmol), 4-fluorobenzenethiol **2d** (160 µL, 1.5 mmol) and the catalyst CuI (4 mg, 2 mol%) in water (2.5 mL) were treated as described for **3a** to obtain **3o** as a yellowish oil (248 mg, 0.90 mmol, 90%). IR (Neat): $\tilde{v} = 3030$, 1706, 1488, 1222, 829 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.24$ (s, 3 H, H-1), 3.00 (dd, J = 6.4 Hz, 14 Hz, 1 H, H-4), 3.17 (dd, J = 8.4 Hz, 14 Hz, 1 H, H-4), 3.85 (t, J = 6.4, 1 H, H-3), 7.02 (m, 2 H, H-arom), 7.20-7.38 (m, 7 H, H-arom) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 27.8$, 36.4, 58.09, 116.1, 116.4, 126.8, 127.2, 128.5, 129.0, 136.0, 136.1, 137.9, 161.8, 164.3, 203.7 ppm. HRMS: calcd. for C₁₆H₁₅FNaOS 297.0725; found 297.0720.

3-((4-Isopropylphenyl)thio)-4-phenylbutan-2-one (3p):

Alcohol **1a** (145 µL, 1 mmol), 4-isopropylbenzenethiol **2e** (233 µL, 1.5 mmol) and the catalyst CuI (4 mg, 2 mol%) in water (2.5 mL) were treated as described for **3a** to obtain **3p** as reddish yellow oil (217 mg, 0.73 mmol, 73%). IR (Neat): $\tilde{v} = 2961$, 2924, 1705, 1350, 833, 709 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.22-1.30$ (m, 6 H, H-methyl), 2.25 (s, 3 H, H-1), 2.89–3.00 (m, 1 H, C<u>H</u>(CH₃)₂), 3.04 (dd, J = 8.4 Hz, 14.4 Hz, 1 H, H-4), 3.21 (dd, J = 8.4 Hz, 14.4 Hz, 1 H, H-4), 3.90 (t, J = 7.2, 1 H, H-3), 7.09–7.34 (m, 9 H, H-arom) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 24.1$ 24.2, 28.1, 34.1, 36.9, 59.2, 127, 127.5, 127.6, 128.8, 129.4, 129.5, 133.9, 138.5, 149.7, 204.5 ppm. HRMS: calcd. for C₁₉H₂₂NaOS 321.1289; found 321.1284.

3-((4-Methoxyphenyl)thio)-4-phenylbutan-2-one (3q):²

Alcohol **1a** (145 µL, 1 mmol), 4-methoxybenzenethiol **2f** (184 µL, 1.5 mmol) and the catalyst CuI (4 mg, 2 mol%) in water (2.5 mL) were treated as described for **3a** to obtain **3q** as a reddish yellow oil (182 mg, 0.64 mmol, 64%). IR (Neat): $\tilde{v} = 2988$, 2901, 1705, 1492, 1245, 827, 698 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.23$ (d, J = 2 Hz, 3 H, H-1), 2.97 (dd, J = 6.8, 16 Hz, 1 H, H-4), 3.13 (dd, J = 8.8 Hz, 14.4 Hz, 1 H, H-4), 3.78–3.80 (m, 1 H, H-3), 3.81 (s, 3 H, H-methoxy), 6.84–6.88 (m, 2 H, H-arom), 7.20–7.34 (m, 7 H, H-arom) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 28.1$, 36.2, 55.2, 59, 114.6, 122.1, 126.6, 128.4, 129.0, 136.3, 138.2, 160.3, 203.8 ppm.

3-(Phenylthio)hexan-2-one (3r):¹

Alcohol **1m** (324 µL, 3 mmol), benzenethiol **2a** (103 µL, 1 mmol) and the catalyst CuI (4 mg, 2 mol%) in water (2.5 mL) were treated as described for **3a** to obtain **3r** as a yellowish oil (139 mg, 0.67 mmol, 67%). ¹H NMR (300 MHz, CDCl₃): δ = 0.96 (t, *J* = 7.2 Hz, 3 H, H-6), 1.38–1.60 (m, 2 H, H-5), 1.64–1.86 (m, 2 H, H-4), 2.26 (s, 3 H, H-1), 3.65 (t, *J* = 7.5 Hz, 1 H, H-3), 7.24–7.44 (m, 5 H, H-arom) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 14.0, 20.8, 26.6, 32.7, 57.8, 128.1, 129.3, 132.4, 133.4, 205.8 ppm.

4-Cyclopentyl-3-(phenylthio)butan-2-one (3s):¹

Alcohol **1n** (138 mg, 1 mmol), benzenethiol **2a** (308 µL, 3 mmol) and the catalyst CuI (4 mg, 2 mol%) in water (2.5 mL) were treated as described for **3a** to obtain **3s** as a yellowish oil (178 mg, 0.73 mmol, 73%). IR (Neat): $\tilde{v} = 2947$, 1705, 1353, 1209, 1025, 739, 690 cm-1. ¹H NMR (400 MHz, CDCl3): $\delta = 1.08-1.18$ (m, 2 H, H-aliphatic), 1.50–1.68 (m, 4 H, H-aliphatic), 1.71–1.90 (m, 4 H, H-aliphatic), 1.93–2.26 (m, 1 H, H-aliphatic), 2.26 (s, 3 H, H-1), 3.69 (t, *J* = 7.6 Hz, 1 H, H-3), 7.23–7.35 (m, 3 H, H-arom), 7.36–7.39 (m, 2 H, H-arom) ppm. ¹³C NMR (125 MHz, CDCl3): $\delta = 24.9$, 25.0, 26.2, 36.5, 37.7, 57.0, 127.7, 129.0, 132.1, 133.2, 205.6 ppm. HRMS: calcd. for C₁₅H₂₀NaOS 271.1133; found 271.1131.

4-Cyclohexyl-3-(phenylthio)butan-2-one (3t):

Alcohol **10** (138 mg, 1 mmol), benzenethiol **2a** (308 μ L, 3 mmol) and the catalyst CuI (4 mg, 2 mol%) in water (2.5 mL) were treated as described for **3a** to obtain **3t** as a yellowish oil (196 mg, 0.75 mmol, 75%). IR (Neat): $\tilde{v} = 2920$, 1703, 1439, 1209, 1025, 739, 689 cm-1. ¹H

NMR (400 MHz, CDCl₃): δ = 0.90–0.96 (m, 2 H, H-aliphatic), 1.17–1.26 (m, 3 H), 1.40–1.70 (m, 8 H, H-aliphatic), 2.25 (s, 3 H, H-1), 3.76 (t, *J* = 7.6 Hz, 1 H, H-3), 7.25–7.36 (m, 5 H, H-arom) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 26.0, 26.1, 26.2, 26.4, 33.1, 35.3, 37.8, 55.3, 127.7, 129.0, 132.0, 133.0, 133.2, 205.5 ppm. HRMS: calcd. for C₁₆H₂₂NaOS 285.1289; found 285.1284.

6-Phenyl-3-(phenylthio)hexan-2-one (3u):

Alcohol **1p** (174 mg, 1 mmol), benzenethiol **2a** (308 µL, 3 mmol) and the catalyst CuI (4 mg, 2 mol%) in water (2.5 mL) were treated as described for **3a** for 72 h to obtain **3u** as a yellowish oil (229 mg, 0.81 mmol, 81%). IR (Neat): $\tilde{v} = 2988$, 2937, 1703, 1354,740, 690 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.73-1.78$ (m, 2 H, H-5), 1.85–1.90 (m, 2 H, H-4), 2.24 (s, 3 H, H-1), 2.67 (t, J = 6.8, 2 H, H-6), 3.63 (t, J = 6.4 Hz, 1 H, H-3), 7.18–7.38 (m, 10 H, H-arom) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 26.5$, 28.9, 29.7, 35.4, 57.6, 125.9, 127.9, 128.3, 129, 132.4, 132.9, 141.5, 205 ppm. HRMS: calcd. for C₁₈H₂₀NaOS 307.1133; found 307.1127.

E. Isolation and characterization of intermediate 4.

(Z)-3-Phenyl-2-(phenylthio)prop-2-en-1-ol (4-Z):¹

Alcohol **1h** (125 µL, 1 mmol), benzenethiol **2a** (154 µL, 1.5 mmol) and the catalyst CuI (4 mg, 2 mol%) were treated in water as described for **3f** for 18 h. Column chromatographic purification afforded the *E*- and *Z*- isomers of **4** (100 mg., 0.41 mmol, 41%) as a colorless oil (Z : E = 7 : 2). ¹H NMR (400 MHz, CDCl₃): $\delta = 2.33$ (bs, 1 H, H-alcohol), 4.23 (s, 2 H, H-1),

7.20 (s, 1 H, H-3), 7.26–7.43 (m, 8 H, H-aromatic), 7.68–7.70 (m, 2 H, H-arom) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 66.3, 126.9, 127.8, 128.1, 129.1, 129.2, 129.3, 130.3, 133.2, 133.3, 133.4, ppm.

(E)-3-Phenyl-2-(phenylthio)prop-2-en-1-ol (4-E):¹

¹H NMR (400 MHz, CDCl₃): δ = 2.09 (brs, 1 H, H-alcohol), 4.37 (s, 2 H, H-1), 6.96 (s, 1 H, H-3), 7.28–7.39 (m, 8 H, H-arom), 7.49–7.51 (m, 2 H, H-arom) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 60.3, 127.6, 127.7, 128.1, 128.5, 128.7, 128.8, 129.1, 129.3 129.4, 131.5, 135.5, 135.9, 136.7 ppm.

F. Cu-catalyzed conversion of intermediate 4 to product 3d in presence of 2a.^a

	$\begin{array}{c c} H & OH \\ \hline \\ Ph & + Ph-SH \\ \hline \\ 4 & S \\ Ph \end{array} \begin{array}{c} 2 \mod & Cul \\ \hline \\ water, reflux \\ 12 h \end{array} \begin{array}{c} O \\ Ph \\ \hline \\ 3d \\ S \\ Ph \end{array}$	
Entry	Amount of 2a	Yield ^b
1	0 mol%	N.R.
2	10 mol%	>95%

^{*a*} Reaction conditions: **4** (0.5 mmol), **2a** (x mmol) and CuI (2 mol%), water (2.0 mL) for 12 h at reflux. ^{*b*} Conversion based on ¹H NMR analysis of the crude reaction mixture.

G. Large scale experiment.

(5 g., 34.2 mmol) (5.65 g., 51.3 mmol) (7.89 g., 30.8 mmol, 90%)

CuI (130 mg, 0.68 mmol, 2 mol%) was weighed and transferred to a 25 mL vial containing a magnet under nitrogen atmosphere. The cap of the vial was closed tightly. 10 mL of degassed water followed by alcohol **1a** (5 g, 4.98 mL, 34.2 mmol) and benzenethiol **2a** (5.65 g, 5.27 mL, 51.3 mmol) were added to the vial by syringe and was stirred using a magnetic stirrer at

reflux for 24 h. After allowing the mixture to cool to room temperature, the reaction mixture was extracted with ethyl acetate (3×60 mL). The combined organic phase was washed with water and brine, dried with anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica-gel (100–200 mess) column chromatography using 3% (*v/v*) ethyl acetate / pentane solution to afford the desired product **3a** (7.89 g, 30.8 mmol, 90%).

H. Copies of ¹H and ¹³C NMR Spectra of all products.

Electronic Supplementary Material (ESI) for Green Chemistry This journal is The Royal Society of Chemistry 2013

24

I. Copies of NMR spectra of isolated intermediate 4.

J. References.

- 1 S. Biswas and J. S. M. Samec, Chem. Commun., 2012, 48, 6586.
- 2 T. Aoyama, T. Takido and M. Kodomari, Synlett, 2005, 2739.