Electronic Supplementary Information

Strategy of fabrication of controlled thermosetting gel based on soybean oil towards supercritical carbon dioxide foaming

Pu Xie,^{*a,b*} Hong Liu,^{*c*} Shou Ji Qiu,^{*a,b*} Min Zhi Rong,^{*a,b*} Ming Qiu Zhang,^{*a,b*} Zhong Yuan Lv^{*c*} and Su Ping Wu^{*a,b*}

 ^a Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, DSAPM Lab, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
^b Materials Science Institute, Sun Yat-sen University, Guangzhou 510275, P. R. China
^c State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China

Table S1. Creation of an orthographic factorial design of eight factors and ten levels for preparation of AESO/St gel

	Factor							
Level	AESO	St (ml)	T (°C)	CP (ml)	CoOct	DTBP	Gel time	ΔT^*
	(g)				(ml)	(ml)	(min)	(°C)
1	22.5	2.75	51	0.15	0.10	0.8	No reaction	0
							within 48 h	
2	21.25	4.12	60	0.35	0	0.6	No reaction	0
							within 38 h	
3	20	5.49	69	0	0.12	0.4	No reaction	0
							within 36 h	
4	18.75	6.87	45	0.2	0.02	0.2	900	0
5	17.5	8.24	54	0.4	0.14	0	55	38
6	16.25	9.62	63	0.05	0.04	0.9	No reaction	0
							within 24 h	
7	15	10.99	72	0.25	0.16	0.7	32	0
8	13.75	12.36	48	0.45	0.06	0.5	70	13
9	12.5	13.74	57	0.10	0.18	0.3	No reaction	0
							within 24 h	
10	11.25	15.22	66	0.30	0.08	0.1	22	65

 $^*\Delta$ T represents the temperature rise during the polymerization. Multiple regression and multi-objective optimization were carried out on the basis of Table S1 (target parameters: Δ T = 0, gel time = 2 h). It was found that stable gel can be obtained under 54 °C when AESO = 20 g, St = 8.3 ml, CP = 0.35 ml, DTBP = 0.3 ml, CoOct = 0.15 ml (i.e. AESO/St (w/w=7:3); CP/DTBP/CoOct (v/v/w=3.5/3/0.002)).

Figure S1. Gel content and extent of polymerization of AESO/St with CP/DTBP/CoOct initiator as a function of reaction time. Compositions: AESO/St (w/w=7:3), CP/DTBP/CoOct (v/v/w=3.5/3/0.002). Reaction temperature: 54 °C.

Figure S2. Dependence of storage modulus on extent of polymerization of AESO/St gel.