Improved multi-elemental analyses by inductively coupled plasma – sector field mass spectrometry through methane addition to the plasma

I. Rodushkin,*^{*a,b*} P. Nordlund,^{*b*} E. Engström^{*a*} and D.C. Baxter^{*b*}

^a Division of Applied Geology, Luleå University of Technology, S-971 87 Luleå, Sweden

^bAnalytica AB, Aurorum 10, S-971 87 Luleå, Sweden. E-mail: <u>ilia.rodushkin@analytica.se</u>

Electronic Supplementary Information

Tables showing analyte sensitivities (Table A) and background equivalent concentrations (Table B) at selected methane gas flow rates. Methane was added through a port in the spray chamber via a mass-flow controller. At each methane flow rate the sensitivity for ¹¹⁵In was optimized.

Supplementary Material (ESI) for JAAS This journal is © The Royal Society of Chemistry 2005

Methane flow rate/ml min ⁻¹	0	1.8	3.0	6.0
¹⁰⁷ Ag (LR)	650	650	550	410
109 Ag (LR)	630	620	530	380
27 Al (MR)	31	32	28	24
75 As (LR)	120	300	460	410
$^{197}Au(LR)$	470	670	780	600
$^{11}B(LR)$	110	100	81	64
138 Ba (LR)	1400	1500	1300	1000
⁹ Be (LR)	74	74	76	73
$^{209}\text{Bi}(LR)$	1800	2000	2000	1500
79 Br (MR)	3	4	3	3
⁴⁴ Ca(MR)	1.5	1.6	1.2	0.9
$^{111}Cd(LR)$	120	130	120	100
114 Cd(LR)	280	290	280	240
140 Ce(LR)	1000	1800	1600	1200
⁵⁹ Co(MR)	39	40	34	26
$^{52}Cr(MR)$	24	28	27	21
133 Cs(LR)	1500	1600	1400	1100
$^{63}Cu(MR)$	23	23	21	16
163 Dy(LR)	580	640	550	410
167 Er(LR)	510	580	500	380
$^{151}Eu(LR)$	1000	1100	930	700
$^{153}\text{Eu}(LR)$	1100	1200	1000	760
⁵⁶ Fe(MR)	42	47	43	37
69 Ga(MR)	22	25	22	17
71 Ga(MR)	15	17	15	12
157 Gd(LR)	580	390	310	230
160 Gd(LR)	540	610	520	400
70 Ge(MR)	3.7	4.7	4.6	3.9
72 Ge(MR)	5.1	5.8	5.7	5.0
178 Hf(LR)	440	610	570	430
180 Hf(LR)	560	790	730	550
202 Hg(LR)	110	150	190	170
165 Ho(LR)	2300	2600	2200	1700
127 I(LR)	550	740	930	820
115 In(LR)	1300	1400	1300	1000
115 In(MR)	85	90	82	62
¹⁹¹ Ir(LR)	680	790	720	540
193 Ir(LR)	1100	1300	1200	900
³⁹ K(HR)	5.2	4.8	4.4	3.4
139 La(LR)	1000	1900	1700	1300
⁷ Li(LR)	210	210	170	130
$^{175}Lu(LR)$	2200	2400	2100	1600
$^{26}Mg(MR)$	2.1	2.3	2.1	1.7
55 Mn(MR)	42	47	43	36
98 Mo(LR)	240	320	300	250
23 Na(MR)	26	30	24	19
⁹³ Nb(LR)	860	1200	1100	900
143 Nd(LR)	240	280	250	180
146 Nd(LR)	340	400	350	230
⁶⁰ Ni(MR)	11	11	10	8

Table	A. An	alyte se	nsitivity	γ (counts s ⁻¹	per ng l ⁻¹) at	different methane	flow rates.
3.6.1	a	. / 1	· _1	0	1.0	• •	6.0

Methane flow rate/ml min ⁻¹	0	1.8	3.0	6.0
$^{31}P(MR)$	1.6	2.8	4.6	4.5
208 Pb(LR)	1100	1100	1000	760
105 Pd(LR)	360	330	290	230
106 Pd(LR)	420	410	370	290
108 Pd(I R)	370	390	360	280
141 Pr(I R)	1700	2300	2000	1500
194 Pt(LR)	420	2300 /190	2000 470	360
195 D+(L D)	420	500	480	370
196 D+(L D)	420	300	400	270
F(LK)	320 800	200 240	300 710	270
RU(LR)	800 750	010	/10	500
$\mathbf{K} \in (\mathbf{L} \mathbf{K})$	/ 30	910	00U 1400	000
103 Re(LR)	1300	1500	1400	1100
29 Rn(LR)	1500	1/00	1500	1200
$^{\circ}$ Ku(LK)	210	240	220	1/0
102 Ru(LR)	490	540	490	390
Ru(LR)	150	180	160	130
²² S(MR)	16	19	17	13
¹²¹ Sb(LR)	300	450	620	560
$\frac{123}{5}$ Sb(LR)	230	350	480	430
45 Sc(MR)	32	38	33	26
S^2 Se(LR)	20	35	41	35
²⁸ Si(MR)	17	19	18	24
147 Sm(LR)	320	350	300	230
149 Sm(LR)	300	320	280	210
118 Sn(LR)	350	380	350	280
120 Sn(LR)	480	530	480	380
38 Sr(LR)	1200	1300	1100	890
181 Ta(LR)	1300	1900	1800	1400
159 Tb(LR)	2300	2600	2200	1700
125 Te(LR)	33	57	73	60
¹²⁶ Te(LR)	88	150	200	160
232 Th(LR)	1200	2500	2500	1800
47 Ti(MR)	2.2	2.5	2.2	17
$^{205}\text{Tl}(LR)$	1600	1600	1500	1100
169 Tm(LR)	2300	2600	2200	1700
238 U(I R)	1900	2800	2200	1900
184 W(LR)	530	700	680	530
$^{51}V(MR)$	26	32	30	23
$^{89}V(I P)$	20 1200	1500	1300	2 <i>5</i> 1100
1(LK)	250	270	210	220
10(LK)	330	370	250	230
$I \cup (LK)$	400	4∠U 7 2	55U 7 1	200
$\Sigma \Pi(MK)$	0.3	1.3	/.1	0.8
^w Zr(LR)	490	690	630	510

Supplementary Material (ESI) for JAAS
This journal is © The Royal Society of Chemistry 2005

Methane flow rate/ml min ⁻¹	0	1.2	2.4	3.0	4.8	6.0	7.2
¹⁰⁷ Ag (LR)	2.0	1.9	1.8	1.9	2.2	2.1	2.4
109 Ag (LR)	1.8	1.6	1.8	2.0	2.1	2.2	2.3
27 Al (MR)	34	45	43	51	48	61	84
75 As (LR)	55	37	22	15	13	28	72
197 Au (LR)	0.2	0.3	0.3	0.2	0.2	0.2	0.8
$^{11}B(LR)$	15	14	14	16	17	18	20
138 Ba (LR)	3.1	3.2	3.7	3.3	3.3	3.3	3.2
⁹ Be (LR)	0.08	0.14	0.06	0.09	0.03	0.08	0.08
$^{209}\text{Bi}(LR)$	0.04	0.03	0.04	0.05	0.03	0.04	0.04
79 Br (MR)	10	7	9	19	16	25	29
⁴⁴ Ca(MR)	26	24	18	11	11	17	18
$^{111}Cd(LR)$	0.2	0.3	0.3	0.2	0.2	0.2	0.8
$^{114}Cd(LR)$	0.4	0.5	0.5	0.4	0.4	0.4	1.6
140 Ce(LR)	0.2	0.2	0.2	0.2	0.2	0.3	0.4
⁵⁹ Co(MR)	0.2	0.2	0.2	0.2	0.2	0.4	0.5
$^{52}Cr(MR)$	2	3	3	5	8	19	47
$^{133}Cs(LR)$	0.03	0.05	0.03	0.03	0.03	0.04	0.04
⁶³ Cu(MR)	12	13	11	8	9	15	20
163 Dy(LR)	0.01	0.01	0.01	0.01	0.02	0.02	0.08
167 Er(LR)	0.01	0.01	0.01	0.01	0.01	0.01	0.01
151 Eu(LR)	0.04	0.04	0.03	0.05	0.07	0.13	0.41
153 Eu(LR)	0.03	0.03	0.03	0.04	0.04	0.07	0.16
⁵⁶ Fe(MR)	17	17	16	17	16	22	26
⁶⁹ Ga(MR)	0.1	0.1	0.2	0.1	0.1	0.1	0.3
71 Ga(MR)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
157 Gd(LR)	0.05	0.03	0.03	0.02	0.03	0.03	0.03
160 Gd(LR)	0.04	0.03	0.03	0.03	0.04	0.03	0.02
70 Ge(MR)	0.1	0.1	1.5	2.3	0.5	0.5	0.8
72 Ge(MR)	1.1	5.3	3.4	2.1	2.4	1.5	0.8
178 Hf(LR)	0.02	0.04	0.03	0.03	0.03	0.06	0.14
180 Hf(LR)	0.02	0.03	0.03	0.04	0.02	0.02	0.04
202 Hg(LR)	3.8	4.1	4.0	3.9	4.5	6.9	12
165 Ho(LR)	0.00	0.00	0.00	0.00	0.00	0.01	0.02
127 I(LR)	13	22	18	18	17	16	32
191 Ir(LR)	0.01	0.00	0.01	0.00	0.00	0.00	0.05
193 Ir(LR)	0.00	0.00	0.00	0.00	0.00	0.01	0.01
³⁹ K(HR)	40	30	30	40	40	30	60
139 La(LR)	0.2	0.2	0.2	0.2	0.2	0.2	0.4
⁷ Li(LR)	2	2	2	2	2	2	2
$^{1/5}Lu(LR)$	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$^{26}Mg(MR)$	30	30	30	20	20	30	30
$^{55}Mn(MR)$	8	8	8	8	7	8	7
98 Mo(LR)	0.4	0.4	0.3	0.4	0.5	0.8	2
23 Na(MR)	40	50	40	60	190	900	1200
⁹³ Nb(LR)	0.05	0.05	0.07	0.04	0.06	0.2	0.6
143 Nd(LR)	0.2	0.2	0.2	0.2	0.2	0.2	0.2
140 Nd(LR)	0.2	0.2	0.2	0.2	0.2	0.2	0.2
^{oo} Ni(MR)	30	40	40	40	60	70	110

Table B. Background equivalent concentrations (ng l^{-1}) monitored in 0.14 M HNO₃ solution at different methane flow rates.

Methane flow rate/ml min ⁻¹	0	1.2	2.4	3.0	4.8	6.0	7.2
$^{31}P(MR)$	100	80	90	90	90	90	300
208 Pb(LR)	0.4	0.4	0.4	0.3	0.3	0.3	0.3
105 Pd(LR)	0.7	0.6	0.4	0.5	0.7	1	4
106 Pd(LR)	0.3	0.3	0.2	0.2	0.2	0.3	0.6
108 Pd(LR)	0.2	0.2	0.2	0.2	0.2	0.2	0.5
141 Pr(LR)	0.05	0.04	0.04	0.04	0.04	0.05	0.06
194 Pt(LR)	0.03	0.02	0.01	0.02	0.02	0.03	0.03
195 Pt(LR)	0.01	0.01	0.01	0.02	0.02	0.03	0.03
196 Pt(LR)	0.02	0.02	0.02	0.02	0.02	0.03	0.04
⁸⁵ Rb(LR)	1	1	2	1	1	3	6
185 Re(LR)	0.00	0.00	0.00	0.00	0.00	0.00	0.03
187 Re(LR)	0.00	0.00	0.00	0.00	0.01	0.02	0.13
103 Rh(LR)	0.00	0.00	0.00	0.01	0.02	0.06	0.6
⁹⁹ Ru(LR)	0.00	0.00	0.00	0.02	0.03	0.2	1
101 Ru(LR)	0.01	0.01	0.01	0.01	0.05	0.2	2
102 Ru(LR)	0.05	0.05	0.05	0.1	0.1	0.5	3
$^{32}S(MR)$	7000	5000	5000	5000	5000	6000	5000
121 Sb(LR)	0.1	0.1	0.1	0.1	0.1	0.2	0.9
123 Sb(LR)	0.05	0.1	0.1	0.1	0.1	0.1	0.4
45 Sc(MR)	0.01	0.02	0.03	0.03	0.03	0.3	0.8
82 Se(LR)	40	20	10	10	10	20	200
28 Si(MR)	2000	2000	1000	2000	2000	3000	5000
147 Sm(LR)	0.03	0.03	0.03	0.02	0.03	0.03	0.04
149 Sm(LR)	0.03	0.03	0.03	0.03	0.03	0.03	0.03
118 Sn(LR)	4	4	4	3	3	4	4
120 Sn(LR)	4	4	4	4	3	3	4
88 Sr(LR)	2	2	2	2	2	2	3
181 Ta(LR)	0.2	0.2	0.2	0.2	0.3	0.3	0.8
159 Tb(LR)	0.06	0.04	0.03	0.03	0.04	0.04	0.04
125 Te(LR)	0.05	0.06	0.04	0.02	0.06	0.06	1
126 Te(LR)	0.3	0.2	0.1	0.05	0.2	0.5	5
232 Th(LR)	0.1	0.1	0.1	0.1	0.1	0.1	0.2
⁴⁷ Ti(MR)	3	3	4	4	3	3	8
205 Tl(LR)	0.1	0.1	0.1	0.1	0.1	0.1	0.1
169 Tm(LR)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
238 U(LR)	0.05	0.06	0.06	0.04	0.05	0.06	0.08
$^{184}W(LR)$	0.04	0.04	0.03	0.03	0.02	0.03	0.07
51 V(MR)	0.4	0.4	0.2	0.2	0.2	0.4	0.3
89 Y(LR)	0.09	0.08	0.07	0.07	0.08	0.1	4
171 Yb(LR)	0.01	0.01	0.01	0.01	0.01	0.01	0.01
$^{1/3}$ Yb(LR)	0.01	0.01	0.01	0.01	0.01	0.01	0.01
66 Zn(MR)	20	20	30	40	40	40	70
90 Zr(LR)	0.5	0.6	0.6	0.5	0.5	1	3

Supplementary Material (ESI) for JAAS This journal is © The Royal Society of Chemistry 2005