
(i) Can and should we construct functions linking the individual isotope concentration to the 
instrumental parameters and propagate the uncertainties according to these functions? 
 
ICPMS and its important branch, LA-ICPMS, use the principle of internal standardisation for data 
quantification1-3. Let us discuss a pair of two isotopes, X and Y. We perform an analysis of a standard 

material, of which the concentration [= mass content] ratio 
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Let us now consider the equation:                    
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Coefficient β, equalling the concentration ratio and the intensity ratio, is the only unknown in this 
equation and can be calculated. Coefficient β can be called sensitivity ratio. Its determination repre-
sents the main reason to apply an external standardisation in the isotope ratio and in the trace element 
ICPMS analysis, and is the backbone of any quantitative or semi-quantitative ICPMS technique.  

Usually, we also have a sample where the concentration ratio 
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the sample by LA-ICPMS and obtain a mean intensity ratio 
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The intensity ratio in this equation is known from our LA-ICPMS analysis of the sample. The β coef-
ficient is not known, but we assume that it is the same as the β coefficient determined on the external 
standard. The only unknown is the concentration ratio, which we look for.  
 
Combining equations (i) and (ii) leads to the well-known equation for the sample concentration ratio: 
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This equation is of general significance in the ICP mass spectrometry and remains the same for the 
isotope ratio and for the trace element techniques. In the latter case, Y can be considered as an internal 
standard for X, and its concentration in the sample must be estimated a priori.  
 
It is important to note that LA-ICPMS does not attempt to construct functions as follows: 

csample
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X !!1 !!2 !!3 !...!!k      (iv) 

where factor α1 describes a correction for the ablation yield for isotope X, α2 – correction for its ioni-
sation efficiency, α3 - correction for ion transmission in the ion channel, etc.  
 
The currently used LA-ICPMS quantification approach described above instead assumes that these 
factors are either equal for isotopes X and Y, or their ratio for isotopes X and Y remains the same for 
any material analysed (enabling the sensitivity ratio transfer from the standard to the sample):  
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Transferring the sensitivity ratio from the standard to the sample allows deriving equation (iii) for the 
sample concentration ratio that includes only individual intensities and their ratios; factors α are re-
moved. In troublesome cases, a matrix matching between the sample and the matrix is used to further 
decrease the role of instrumental parameters hidden in these factors (i.e., in the sensitivity ratio value). 
 
One can argue that this approach is incomplete, because it does not teach us about the interplay be-
tween instrumental parameters such as laser system parameters, detector system parameters, atomic 
parameters, sample parameters, environmental parameters, acquisition parameters, plasma chemistry 
in the laser spot, etc., and concentration (concentration ratio) we look for, and thus prevents us from 
progressing in the field of ICPMS. 
 
But this argument contrasts the practice of thirty years of development in ICPMS and of twenty years 
of LA-ICPMS, where all quantitative data have been and still are obtained based on the internal stand-
ardisation approach, without using poorly known now and material-specific empirical or theoretical 
functions connecting, for example the ablation yield with the parameters of the laser beam and proper-
ties of the ablated material. It is also to neglect the practice of many decades in the field of secondary 
ion mass spectrometry (SIMS), where the complexity of secondary ion sputtering from crystalline 
solids of complex chemical composition is also approached based on the principle of internal stand-
ardisation as explained above, using a matrix matching between the standard and sample when neces-
sary and possible4-6, without building a quantitative model of sputtering as a function of the primary 
beam parameters and sample composition, structure and orientation. 
 
This said, we are not against studies linking concentrations with instrumental parameters. But we em-
phasize that the current approach of quantitative LA-ICPMS and SIMS is to replace using these links, 
poorly known as far as the ablation yield and processes in the ICP are concerned, by the principle of 
internal standardisation. This is in accord with the ISO-GUM guided metrological studies available in 
the field of ICPMS2. 
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(ii) Can we construct functions linking the individual isotope intensity to the instrumental pa-
rameters (modelling ICPMS intensities)?  
 
The fundamentals of ICPMS signal fluctuations are rooted in the theory of Poisson processes. To ex-
plain the role of the Poisson process in the distribution of ICPMS count numbers, we consider the 
Poisson distribution as a limiting case of the binomial distribution constrained by inefficient ion 
transmission from the ICP to the detector. The ICP is an atmospheric pressure ion source. Extracting 
ions from the ICP into the ion channel of the spectrometer, kept under vacuum, is a technical chal-
lenge: most ions generated in the ICP are lost during the extraction. In addition, losses due to incom-
plete ion transmission in the ion channel, especially at higher resolutions, should be taken into ac-
count. Thus, if a large number (M) of ions face the sampler cone per time interval, but the probability 
(p) for each individual ion to reach the detector and be registered is low, the numbers (N) of actually 
registered ions per time interval (per analysis) are Poisson distributed with a mean and variance equal 
to pM. This formalism is valid if the number M of ions subject to extraction per time interval is con-
stant. However, due to turbulences in the torch and instabilities of the sample introduction system, M 
fluctuates with time. This is the case of the so-called doubly stochastic, or mixed, Poisson process1. It 
could be imagined that a subset of N values is acquired at one M, an other subset – at an other M, etc., 
after which all subsets are mixed in proportions corresponding to the probability of occurrence of a 
given M value1,2. The mixing results in the appearance of an excess variance in the distribution of 



count numbers compared to the variance of an ordinary Poisson process (constant M)1,2. The excess 
variance shows a quadratic dependence on the signal intensity. In weak signals, it is insignificant. 
Such signals can often be adequately approximated by an ordinary Poisson process with a variance 
equal to the mean count number. In strong signals, it increases. The excess variance in the uncertainty 
of ICPMS signals is otherwise known as flicker noise, although it is an integral part of the doubly 
stochastic Poisson process, not an individual noise component. Describing a doubly stochastic Poisson 
process brings us to a mathematical formalism as follows1: 
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where N(0,T) is the total number of counts acquired in an analysis of duration T, Nmean is the mean 
number of counts over a series of replicate analyses, and γ(u) is the intensity autocovariance function, 
which indeed reflects the role of instrumental parameters, such as processes in the ICP and during the 
ablation. The dead time correction to the variance in this formula is omitted for simplicity, and the 
formula (v) is valid for non-transient signals only.  
 
The Poisson description of uncertainty in ICPMS is a causal model describing the source of fluctua-
tions, not only their extent. At the same time, it requires estimating the autocovariance function γ(u), 
which is mathematically complex and poorly developed for transient signals.  Given the mathematical 
complexity of the double stochasticity, descriptive methods based on the individual sweep intensities 
or their ratios are widely used and still remain the only practical solution for the uncertainty estimation 
of strong ICPMS signals with a non-negligible excess variance. The differencing method belongs to 
the family of these methods, namely it provides a practical solution for transient signals. 
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(iii) If we do not have functions linking an isotope concentration or intensity to the instrumental 
parameters, is the combined uncertainty of the sample concentration (ratio) underestimated? 
 
The combined uncertainty above is calculated according to equation (ii), propagating the intensity 
ratio and the sensitivity ratio uncertainties as explained in section ‘Introduction to the methodology of 
the LA-ICPMS signal treatment’, using equation (2) from this section: 
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This equation gives the variance of the concentration ratio cX/cY of isotopes X and Y depending on the 
absolute values and variances of their intensity ratio IX/IY and sensitivity ratio β (under the assumption 
of no covariance between them). 
 
If all components in this equation have correctly estimated uncertainties, the combined uncertainty 
will not be underestimated. Calculating the sensitivity ratio uncertainty is beyond the scope of this 
paper; it invokes the certification of standard(s) and, in the current LA-ICPMS practice of isotope ratio 
measurements, a replicate analysis of one single standard. We assume that the sensitivity ratio uncer-
tainty is accurately estimated, and refrain here from further discussions on this subject. 
 
Calculating the intensity ratio uncertainty based on the ratio of means definition and using the differ-
encing method is the subject of this paper. This is done based on the mean intensity uncertainties of 
the individual isotopes forming the ratio [see f-la (7) in the main text].  Is the mean intensity uncertain-
ty underestimated if we do not consider functions linking an isotope intensity to the instrumental pa-
rameters?  



 
The intensity of an isotope is a ratio of the number of counts to time during which those counts were 
collected: 
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In the counting mode, this intensity is dead time corrected:  

Imean corrected =
Ncollected
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       (vii) 

where τ is the detection system dead time. In the current ICPMS practice, τ, if determined by the ratio 
method, is considered precisely known, and its uncertainty is not propagated1-3. Our replicate dead 
time measurements on the sector field ICPMS Element XR, based on the ratio method, give a scatter 
of no more than 1 ns, and we support the general opinion that the dead time can be considered as pre-
cisely known. Measurement time T is always considered to be precisely known. 
 
The same applies to the counting-analog calibration. Intensity collected in the analog mode is recalcu-
lated as a count per second value using a calibration coefficient. Methods to calibrate such coefficients 
are instrument dependent; basically, they require collecting the same signal by a large number of repli-
cate paired measurements, when the signal is first acquired in the counting mode, then in the analog 
mode, etc. This calibration is considered precise in the current ICPMS practice. 
 
Thus, in ICPMS, we consider intensities as a function of the count numbers and constant values that 
have no uncertainties. Consequently, estimating the mean intensity uncertainty as a standard deviation 
of the mean for a number of dead time corrected sweep intensities does not involve parameters, which 
are included in the mathematical expression for the sweep intensities, but of which the uncertainties 
are unjustly neglected. No intensity uncertainty underestimation occurs. 
 
For an interested reader, we could make a theoretical remark regarding the accuracy, not precision, of 
the dead time correction as it is commonly done in the ICPMS (f-la vii). This formula is strictly valid 
only for Poisson distributed signals with a constant rate (variance=mean count number). For signals, 
of which the rate randomly varies, such as doubly stochastic Poisson distributed signals, more com-
plex models are invoked4,5. This question is beyond the current ICPMS knowledge. 
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