Supplementary Material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2002 data_global _journal_coden_Cambridge 1145 _publ_requested_journal 'Journal of Materials Chemistry' loop_ _publ_author_name 'Hix, G.' 'Kariuki, Benson M.' 'MacLean, Elizabeth J.' 'Tremayne, Mary' 'Turner, A.' _publ_contact_author_name 'Dr G Hix' _publ_contact_author_address ; School of Chemistry The Hawthorn Building De Montfort University Leicester LE1 9BH ; _publ_contact_author_email 'GHIX@DMU.AC.UK' _publ_section_title ; Strategies for the Synthesis of Porous Metal Phosphonate Materials ; data_ejm39 _database_code_CSD 184731 _audit_creation_method SHELXL-97 _chemical_name_systematic ; 'copper hydroxymethylphosphonate' ; _chemical_name_common 'copper hydroxymethylphosphonate' _chemical_melting_point 'decomposes' _chemical_formula_moiety ? _chemical_formula_sum 'C H3 Cu O4 P' _chemical_formula_weight 173.54 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'P' 'P' 0.1023 0.0942 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Cu' 'Cu' 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting trigonal _symmetry_space_group_name_H-M R-3 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-y, x-y, z' '-x+y, -x, z' 'x+2/3, y+1/3, z+1/3' '-y+2/3, x-y+1/3, z+1/3' '-x+y+2/3, -x+1/3, z+1/3' 'x+1/3, y+2/3, z+2/3' '-y+1/3, x-y+2/3, z+2/3' '-x+y+1/3, -x+2/3, z+2/3' '-x, -y, -z' 'y, -x+y, -z' 'x-y, x, -z' '-x+2/3, -y+1/3, -z+1/3' 'y+2/3, -x+y+1/3, -z+1/3' 'x-y+2/3, x+1/3, -z+1/3' '-x+1/3, -y+2/3, -z+2/3' 'y+1/3, -x+y+2/3, -z+2/3' 'x-y+1/3, x+2/3, -z+2/3' _cell_length_a 16.1240(17) _cell_length_b 16.1240(17) _cell_length_c 7.6023(11) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 120.00 _cell_volume 1711.7(4) _cell_formula_units_Z 18 _cell_measurement_temperature 150(2) _cell_measurement_reflns_used ? _cell_measurement_theta_min 2.5 _cell_measurement_theta_max 30.0 _exptl_crystal_description needle _exptl_crystal_colour blue _exptl_crystal_size_max 0.5 _exptl_crystal_size_mid 0.05 _exptl_crystal_size_min 0.05 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 3.030 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 1530 _exptl_absorpt_coefficient_mu 6.029 _exptl_absorpt_correction_type ? _exptl_absorpt_correction_T_min ? _exptl_absorpt_correction_T_max ? _exptl_absorpt_process_details ? _exptl_special_details ; ? ; _diffrn_ambient_temperature 150(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type ? _diffrn_measurement_method ? _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 3951 _diffrn_reflns_av_R_equivalents 0.0354 _diffrn_reflns_av_sigmaI/netI 0.0358 _diffrn_reflns_limit_h_min -16 _diffrn_reflns_limit_h_max 22 _diffrn_reflns_limit_k_min -22 _diffrn_reflns_limit_k_max 21 _diffrn_reflns_limit_l_min -10 _diffrn_reflns_limit_l_max 10 _diffrn_reflns_theta_min 2.53 _diffrn_reflns_theta_max 30.02 _reflns_number_total 1045 _reflns_number_gt 883 _reflns_threshold_expression >2sigma(I) _computing_data_collection ? _computing_cell_refinement ? _computing_data_reduction ? _computing_structure_solution 'SHELXL-97 (Sheldrick, 1997)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXL-97 (Sheldrick, 1997)' _computing_publication_material 'SHELXL-97 (Sheldrick, 1997)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1000P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 1045 _refine_ls_number_parameters 64 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0336 _refine_ls_R_factor_gt 0.0309 _refine_ls_wR_factor_ref 0.0826 _refine_ls_wR_factor_gt 0.0814 _refine_ls_goodness_of_fit_ref 0.619 _refine_ls_restrained_S_all 0.619 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cu1 Cu 0.06465(2) 0.40188(2) 0.88250(4) 0.00794(14) Uani 1 1 d . . . O1 O 0.13398(14) 0.32611(15) 1.0478(3) 0.0133(4) Uani 1 1 d . . . P2 P 0.24107(5) 0.39433(5) 1.07328(9) 0.00823(17) Uani 1 1 d . . . O2 O 0.29650(14) 0.34704(15) 0.9954(3) 0.0104(4) Uani 1 1 d . . . O3 O 0.27172(15) 0.42841(15) 1.2593(3) 0.0113(4) Uani 1 1 d . . . O4 O 0.20469(16) 0.48231(16) 0.8016(3) 0.0149(4) Uani 1 1 d . . . C6 C 0.2720(2) 0.5010(2) 0.9444(4) 0.0143(6) Uani 1 1 d . . . H6A H 0.2734 0.5508 1.0226 0.017 Uiso 1 1 calc R . . H6B H 0.3370 0.5263 0.8947 0.017 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cu1 0.00789(19) 0.0087(2) 0.0070(2) -0.00087(11) 0.00012(11) 0.00398(14) O1 0.0086(9) 0.0159(10) 0.0141(11) -0.0044(8) -0.0014(7) 0.0053(8) P2 0.0081(3) 0.0098(3) 0.0080(4) -0.0012(2) -0.0009(2) 0.0054(3) O2 0.0115(9) 0.0148(10) 0.0084(10) -0.0021(7) -0.0012(7) 0.0093(8) O3 0.0134(9) 0.0137(10) 0.0090(10) -0.0023(8) -0.0027(7) 0.0084(8) O4 0.0163(10) 0.0169(10) 0.0126(11) -0.0005(8) -0.0010(8) 0.0092(9) C6 0.0154(13) 0.0122(13) 0.0141(14) -0.0010(10) -0.0013(10) 0.0059(11) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cu1 O3 1.919(2) 14_457 ? Cu1 O2 1.986(2) 16_556 ? Cu1 O2 2.011(2) 12_557 ? Cu1 O4 2.057(2) . ? Cu1 O1 2.224(2) 8_554 ? Cu1 O1 2.385(2) . ? O1 P2 1.526(2) . ? O1 Cu1 2.224(2) 6_455 ? P2 O3 1.508(2) . ? P2 O2 1.553(2) . ? P2 C6 1.820(3) . ? O2 Cu1 1.986(2) 16_556 ? O2 Cu1 2.0106(19) 11_557 ? O3 Cu1 1.919(2) 15_557 ? O4 C6 1.456(4) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag O3 Cu1 O2 175.39(9) 14_457 16_556 ? O3 Cu1 O2 93.53(8) 14_457 12_557 ? O2 Cu1 O2 90.24(3) 16_556 12_557 ? O3 Cu1 O4 88.07(9) 14_457 . ? O2 Cu1 O4 89.40(9) 16_556 . ? O2 Cu1 O4 158.42(9) 12_557 . ? O3 Cu1 O1 93.75(8) 14_457 8_554 ? O2 Cu1 O1 82.69(8) 16_556 8_554 ? O2 Cu1 O1 104.98(8) 12_557 8_554 ? O4 Cu1 O1 96.38(8) . 8_554 ? O3 Cu1 O1 88.16(8) 14_457 . ? O2 Cu1 O1 95.22(8) 16_556 . ? O2 Cu1 O1 78.19(8) 12_557 . ? O4 Cu1 O1 80.35(8) . . ? O1 Cu1 O1 176.17(8) 8_554 . ? P2 O1 Cu1 135.93(13) . 6_455 ? P2 O1 Cu1 110.43(12) . . ? Cu1 O1 Cu1 85.98(7) 6_455 . ? O3 P2 O1 115.36(12) . . ? O3 P2 O2 111.85(11) . . ? O1 P2 O2 108.61(12) . . ? O3 P2 C6 105.98(13) . . ? O1 P2 C6 106.84(13) . . ? O2 P2 C6 107.80(13) . . ? P2 O2 Cu1 130.01(12) . 16_556 ? P2 O2 Cu1 125.38(12) . 11_557 ? Cu1 O2 Cu1 103.79(9) 16_556 11_557 ? P2 O3 Cu1 136.95(13) . 15_557 ? C6 O4 Cu1 112.19(18) . . ? O4 C6 P2 112.4(2) . . ? _diffrn_measured_fraction_theta_max 0.936 _diffrn_reflns_theta_full 30.02 _diffrn_measured_fraction_theta_full 0.936 _refine_diff_density_max 1.081 _refine_diff_density_min -0.771 _refine_diff_density_rms 0.268 data_zncn _database_code_CSD 184732 _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common 'zinc amidomethylphosphonate' _chemical_melting_point 'decomposes' _chemical_formula_moiety ? _chemical_formula_sum 'C2 H6 N O5 P Zn' _chemical_formula_weight 220.42 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'P' 'P' 0.1023 0.0942 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Zn' 'Zn' 0.2839 1.4301 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M Pna21 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z+1/2' '-x+1/2, y+1/2, z+1/2' 'x+1/2, -y+1/2, z' _cell_length_a 9.5560(13) _cell_length_b 12.611(2) _cell_length_c 5.2318(8) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 630.46(17) _cell_formula_units_Z 4 _cell_measurement_temperature 296(2) _cell_measurement_reflns_used ? _cell_measurement_theta_min 3.2 _cell_measurement_theta_max 25.3 _exptl_crystal_description needle _exptl_crystal_colour colourless _exptl_crystal_size_max 0.50 _exptl_crystal_size_mid 0.10 _exptl_crystal_size_min 0.05 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 2.322 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 440 _exptl_absorpt_coefficient_mu 4.111 _exptl_absorpt_correction_type ? _exptl_absorpt_correction_T_min 0.2330 _exptl_absorpt_correction_T_max 0.8209 _exptl_absorpt_process_details ? _exptl_special_details ; ? ; _diffrn_ambient_temperature 296(2) _diffrn_radiation_wavelength 0.71069 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Rigaku R-Axis diffractometer' _diffrn_measurement_method ? _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 3659 _diffrn_reflns_av_R_equivalents 0.0517 _diffrn_reflns_av_sigmaI/netI 0.0311 _diffrn_reflns_limit_h_min -11 _diffrn_reflns_limit_h_max 11 _diffrn_reflns_limit_k_min -15 _diffrn_reflns_limit_k_max 15 _diffrn_reflns_limit_l_min -6 _diffrn_reflns_limit_l_max 6 _diffrn_reflns_theta_min 3.23 _diffrn_reflns_theta_max 25.30 _reflns_number_total 1109 _reflns_number_gt 1106 _reflns_threshold_expression >2sigma(I) _computing_data_collection ? _computing_cell_refinement ? _computing_data_reduction ? _computing_structure_solution 'SHELXL-97 (Sheldrick, 1997)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXL-97 (Sheldrick, 1997)' _computing_publication_material 'SHELXL-97 (Sheldrick, 1997)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0540P)^2^+0.8494P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.06(3) _refine_ls_number_reflns 1109 _refine_ls_number_parameters 107 _refine_ls_number_restraints 1 _refine_ls_R_factor_all 0.0313 _refine_ls_R_factor_gt 0.0311 _refine_ls_wR_factor_ref 0.0833 _refine_ls_wR_factor_gt 0.0831 _refine_ls_goodness_of_fit_ref 1.085 _refine_ls_restrained_S_all 1.084 _refine_ls_shift/su_max 0.005 _refine_ls_shift/su_mean 0.001 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Zn1 Zn 0.10765(4) 0.11513(3) 0.25399(16) 0.01660(19) Uani 1 1 d . . . P1 P 0.19712(9) -0.00458(7) -0.2472(3) 0.0148(2) Uani 1 1 d . . . O1 O 0.1656(4) 0.0983(2) -0.3892(7) 0.0214(7) Uani 1 1 d . . . O2 O 0.2114(4) 0.0148(3) 0.0401(7) 0.0268(8) Uani 1 1 d . . . O3 O 0.0920(3) -0.0923(3) -0.3055(7) 0.0245(11) Uani 1 1 d . . . O4 O 0.3640(4) -0.2416(3) -0.3812(9) 0.0311(9) Uani 1 1 d . . . O5 O -0.1469(4) 0.2171(3) 0.7355(14) 0.0421(9) Uani 1 1 d . . . N1 N 0.4487(5) -0.1671(3) -0.0292(8) 0.0281(10) Uani 1 1 d . . . C1 C 0.3638(5) -0.0540(3) -0.3603(11) 0.0174(9) Uani 1 1 d . . . C2 C 0.3986(3) -0.1613(3) -0.250(2) 0.0188(8) Uani 1 1 d . . . H1 H 0.430(6) 0.000(4) -0.276(15) 0.033(15) Uiso 1 1 d . . . H2 H 0.361(5) -0.058(4) -0.552(13) 0.017(13) Uiso 1 1 d . . . H3 H -0.059(9) 0.241(6) 0.646(16) 0.07(3) Uiso 1 1 d . . . H4 H -0.214(6) 0.287(5) 0.666(12) 0.037(16) Uiso 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Zn1 0.0175(3) 0.0138(3) 0.0185(3) -0.0004(3) -0.0008(3) 0.00026(14) P1 0.0158(4) 0.0127(5) 0.0160(5) 0.0010(7) -0.0002(7) 0.0024(3) O1 0.0261(16) 0.0147(14) 0.0235(18) 0.0012(14) -0.0032(14) 0.0045(14) O2 0.0332(19) 0.0322(19) 0.0150(17) -0.0011(14) 0.0001(15) 0.0139(15) O3 0.0197(15) 0.0214(16) 0.032(3) -0.0077(15) 0.0075(13) -0.0038(12) O4 0.043(2) 0.0174(18) 0.033(2) 0.0004(16) -0.0123(17) 0.0044(17) O5 0.042(2) 0.0421(19) 0.043(3) 0.004(3) 0.000(3) 0.0007(16) N1 0.046(2) 0.0141(19) 0.025(2) 0.0027(17) -0.023(2) 0.0038(18) C1 0.018(2) 0.014(2) 0.020(2) 0.0033(19) 0.0023(18) 0.0011(17) C2 0.0148(16) 0.0110(18) 0.031(2) 0.000(3) -0.003(2) 0.0008(13) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Zn1 O3 1.955(3) 2 ? Zn1 O2 1.958(3) . ? Zn1 O1 1.959(4) 1_556 ? Zn1 O4 1.959(4) 3 ? P1 O3 1.525(3) . ? P1 O1 1.525(3) . ? P1 O2 1.529(4) . ? P1 C1 1.810(5) . ? O1 Zn1 1.959(4) 1_554 ? O3 Zn1 1.955(3) 2_554 ? O4 C2 1.268(7) . ? O4 Zn1 1.959(4) 3_544 ? N1 C2 1.251(10) . ? C1 C2 1.509(7) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag O3 Zn1 O2 107.94(16) 2 . ? O3 Zn1 O1 114.32(15) 2 1_556 ? O2 Zn1 O1 109.37(14) . 1_556 ? O3 Zn1 O4 102.33(15) 2 3 ? O2 Zn1 O4 108.62(17) . 3 ? O1 Zn1 O4 113.88(16) 1_556 3 ? O3 P1 O1 112.9(2) . . ? O3 P1 O2 111.8(2) . . ? O1 P1 O2 111.1(2) . . ? O3 P1 C1 105.3(2) . . ? O1 P1 C1 107.9(2) . . ? O2 P1 C1 107.3(2) . . ? P1 O1 Zn1 127.7(2) . 1_554 ? P1 O2 Zn1 128.3(2) . . ? P1 O3 Zn1 135.9(2) . 2_554 ? C2 O4 Zn1 120.3(4) . 3_544 ? C2 C1 P1 112.2(3) . . ? N1 C2 O4 123.7(5) . . ? N1 C2 C1 119.3(5) . . ? O4 C2 C1 116.8(7) . . ? _diffrn_measured_fraction_theta_max 0.980 _diffrn_reflns_theta_full 25.30 _diffrn_measured_fraction_theta_full 0.980 _refine_diff_density_max 0.820 _refine_diff_density_min -0.543 _refine_diff_density_rms 0.104 data_zn26 _database_code_CSD 184733 _audit_creation_method SHELXL-97 _chemical_name_systematic ; 'trizinc dicarboxymethylphosphonate hydrate' ; _chemical_name_common 'trizinc dicarboxymethylphosphonate hydrate' _chemical_melting_point decomposes _chemical_formula_moiety '(C4 H4 O10 P2 Zn3), 1.38(H2 O)' _chemical_formula_sum 'C4 H6.76 O11.38 P2 Zn3' _chemical_formula_weight 495.03 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'P' 'P' 0.1023 0.0942 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Zn' 'Zn' 0.2839 1.4301 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M P21/n loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2' _cell_length_a 4.9250(3) _cell_length_b 22.0972(3) _cell_length_c 12.9038(3) _cell_angle_alpha 90.00 _cell_angle_beta 99.245(2) _cell_angle_gamma 90.00 _cell_volume 1386.06(9) _cell_formula_units_Z 4 _cell_measurement_temperature 293(2) _cell_measurement_reflns_used 12402 _cell_measurement_theta_min 3.2 _cell_measurement_theta_max 29.7 _exptl_crystal_description needle _exptl_crystal_colour colourless _exptl_crystal_size_max 0.50 _exptl_crystal_size_mid 0.15 _exptl_crystal_size_min 0.15 _exptl_crystal_density_meas 'not measured' _exptl_crystal_density_diffrn 2.372 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 967 _exptl_absorpt_coefficient_mu 5.431 _exptl_absorpt_correction_type Multi-scan _exptl_absorpt_correction_T_min 0.6127 _exptl_absorpt_correction_T_max 0.6127 _exptl_absorpt_process_details ; Using multiple and symmetry-related data measurements via the program SORTAV See R.H. Blessing, Acta Crysta (1995), A51, 33-38 ; _exptl_special_details ; PLEASE NOTE cell_measurement_ fields are not relevant to area detector data, the entire data set is used to refine the cell, which is indexed from all observed reflections in a 10 degree phi range. ; _diffrn_ambient_temperature 293(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'Enraf Nonius FR591 rotating anode' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Enraf Nonius KappaCCD area detector' _diffrn_measurement_method 'Phi and Omega scans to fill Ewald sphere' _diffrn_detector_area_resol_mean 9.091 _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 7952 _diffrn_reflns_av_R_equivalents 0.0487 _diffrn_reflns_av_sigmaI/netI 0.0601 _diffrn_reflns_limit_h_min -6 _diffrn_reflns_limit_h_max 6 _diffrn_reflns_limit_k_min -28 _diffrn_reflns_limit_k_max 29 _diffrn_reflns_limit_l_min -16 _diffrn_reflns_limit_l_max 16 _diffrn_reflns_theta_min 3.19 _diffrn_reflns_theta_max 29.70 _reflns_number_total 3399 _reflns_number_gt 2805 _reflns_threshold_expression >2sigma(I) _computing_data_collection loop_ ' DENZO (Otwinowski and Minor, 1997' ' COLLECT (Hooft, 1998)' _computing_cell_refinement 'DENZO and COLLECT' _computing_data_reduction 'DENZO and COLLECT' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXL-97 (Sheldrick, 1997)' _computing_publication_material ? _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0817P)^2^+15.7446P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 3399 _refine_ls_number_parameters 193 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0778 _refine_ls_R_factor_gt 0.0649 _refine_ls_wR_factor_ref 0.1654 _refine_ls_wR_factor_gt 0.1589 _refine_ls_goodness_of_fit_ref 1.051 _refine_ls_restrained_S_all 1.051 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.5905(15) 0.7757(3) 0.0508(5) 0.0165(13) Uani 1 1 d . . . H1A H 0.791(12) 0.7720(4) 0.0592(7) 0.020 Uiso 1 1 calc R . . H1B H 0.540(3) 0.815(2) 0.018(2) 0.020 Uiso 1 1 calc R . . C2 C -0.1282(14) 0.5113(3) -0.2318(5) 0.0146(12) Uani 1 1 d . . . H2A H -0.027(6) 0.4973(9) -0.284(3) 0.017 Uiso 1 1 calc R . . H2B H -0.302(11) 0.5257(9) -0.266(2) 0.017 Uiso 1 1 calc R . . C3 C 0.0261(13) 0.5619(3) -0.1704(5) 0.0122(12) Uani 1 1 d . . . C4 C 0.5045(14) 0.7744(3) 0.1574(6) 0.0153(13) Uani 1 1 d . . . O1 O 0.5333(10) 0.6553(2) 0.0155(4) 0.0139(9) Uani 1 1 d . . . O2 O 1.1274(10) 0.7246(2) -0.0469(4) 0.0159(10) Uani 1 1 d . . . O3 O 0.5350(9) 0.7221(2) -0.1419(4) 0.0144(9) Uani 1 1 d . . . O4 O 0.8940(9) 0.57655(19) 0.1055(4) 0.0135(9) Uani 1 1 d . . . O5 O 0.3138(9) 0.5245(2) 0.0540(4) 0.0115(9) Uani 1 1 d . . . O6 O 0.3639(9) 0.5958(2) 0.2104(4) 0.0157(9) Uani 1 1 d . . . O7 O 0.2792(10) 0.5667(2) -0.1660(4) 0.0169(10) Uani 1 1 d . . . O8 O 0.8799(10) 0.5980(2) -0.1226(4) 0.0142(9) Uani 1 1 d . . . O9 O 0.4319(11) 0.8242(2) 0.1937(4) 0.0204(11) Uani 1 1 d . . . O10 O 0.5057(12) 0.7259(2) 0.2073(4) 0.0214(11) Uani 1 1 d . . . O11 O 0.9805(13) 0.6605(3) 0.2872(5) 0.0209(15) Uiso 0.809(11) 1 d P . . O11A O 0.996(5) 0.7024(11) 0.1962(19) 0.012(5) Uiso 0.191(11) 1 d P . . O11B O 0.846(5) 0.6196(12) 0.335(2) 0.019(6) Uiso 0.191(11) 1 d P . . O12 O 1.417(6) 0.6446(14) 0.418(2) 0.029(8) Uiso 0.191(11) 1 d P . . P1 P 0.4349(3) 0.71574(7) -0.03536(13) 0.0125(3) Uani 1 1 d . . . P2 P 1.1795(3) 0.55041(7) 0.14435(13) 0.0112(3) Uani 1 1 d . . . Zn1 Zn 0.67299(16) 0.64296(3) 0.17289(6) 0.0145(2) Uani 1 1 d . . . Zn2 Zn 0.59232(15) 0.56676(3) -0.03185(6) 0.0120(2) Uani 1 1 d . . . Zn3 Zn 0.88310(16) 0.68660(3) -0.15972(6) 0.0144(2) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.025(4) 0.007(3) 0.017(3) 0.000(2) 0.003(3) 0.001(2) C2 0.018(3) 0.011(3) 0.015(3) 0.002(2) 0.001(2) 0.001(2) C3 0.016(3) 0.012(3) 0.008(3) 0.006(2) 0.001(2) -0.003(2) C4 0.024(4) 0.004(3) 0.017(3) -0.003(2) 0.002(3) 0.000(2) O1 0.021(2) 0.005(2) 0.015(2) -0.0024(17) 0.0009(18) 0.0009(16) O2 0.019(2) 0.013(2) 0.016(2) -0.0008(18) 0.0016(18) 0.0000(17) O3 0.018(2) 0.011(2) 0.015(2) 0.0020(17) 0.0038(18) 0.0000(17) O4 0.018(2) 0.005(2) 0.017(2) -0.0048(17) 0.0021(18) 0.0018(16) O5 0.015(2) 0.006(2) 0.014(2) 0.0008(16) 0.0030(17) 0.0000(15) O6 0.017(2) 0.013(2) 0.018(2) -0.0070(18) 0.0043(18) -0.0032(17) O7 0.021(3) 0.015(2) 0.014(2) -0.0004(18) 0.0025(18) 0.0003(18) O8 0.021(2) 0.005(2) 0.018(2) 0.0021(17) 0.0067(18) 0.0021(16) O9 0.032(3) 0.010(2) 0.021(3) -0.0025(19) 0.008(2) 0.0014(19) O10 0.045(3) 0.005(2) 0.014(2) -0.0003(18) 0.005(2) 0.002(2) P1 0.0162(8) 0.0079(7) 0.0135(8) -0.0004(6) 0.0027(6) 0.0011(6) P2 0.0153(8) 0.0050(7) 0.0134(8) 0.0001(6) 0.0025(6) -0.0007(5) Zn1 0.0195(4) 0.0072(4) 0.0163(4) -0.0003(3) 0.0019(3) -0.0006(3) Zn2 0.0161(4) 0.0056(3) 0.0147(4) 0.0002(3) 0.0034(3) 0.0000(2) Zn3 0.0192(4) 0.0079(4) 0.0164(4) 0.0008(3) 0.0042(3) 0.0002(3) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 C4 1.502(10) . ? C1 P1 1.818(7) . ? C2 C3 1.504(9) . ? C2 P2 1.814(7) 3_665 ? C3 O7 1.243(8) . ? C3 O8 1.294(8) 1_455 ? C4 O10 1.250(8) . ? C4 O9 1.270(8) . ? O1 P1 1.532(5) . ? O1 Zn1 2.056(5) . ? O1 Zn2 2.084(4) . ? O2 P1 1.511(5) 1_655 ? O2 Zn3 1.926(5) . ? O3 P1 1.540(5) . ? O3 Zn3 1.932(5) . ? O4 P2 1.528(5) . ? O4 Zn1 2.097(4) . ? O4 Zn2 2.133(5) . ? O5 P2 1.540(5) 1_455 ? O5 Zn2 2.099(4) 3_665 ? O5 Zn2 2.114(4) . ? O6 P2 1.519(5) 1_455 ? O6 Zn1 1.969(5) . ? O7 Zn2 2.126(5) . ? O8 C3 1.294(8) 1_655 ? O8 Zn3 2.017(4) . ? O8 Zn2 2.095(5) . ? O9 Zn3 1.959(5) 4_576 ? O10 Zn1 2.086(5) . ? O11 O11B 1.33(3) . ? O11 O11A 1.51(2) . ? O11 Zn1 1.975(6) . ? O11A Zn1 2.05(2) . ? O11B Zn1 2.19(3) . ? P1 O2 1.511(5) 1_455 ? P2 O6 1.519(5) 1_655 ? P2 O5 1.540(5) 1_655 ? P2 C2 1.814(7) 3_665 ? Zn1 Zn2 3.1042(11) . ? Zn2 O5 2.099(4) 3_665 ? Zn3 O9 1.959(5) 4_675 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C4 C1 P1 113.1(5) . . ? C3 C2 P2 109.9(5) . 3_665 ? O7 C3 O8 123.8(6) . 1_455 ? O7 C3 C2 120.4(6) . . ? O8 C3 C2 115.8(6) 1_455 . ? O10 C4 O9 122.1(7) . . ? O10 C4 C1 120.6(6) . . ? O9 C4 C1 117.3(6) . . ? P1 O1 Zn1 124.9(3) . . ? P1 O1 Zn2 138.0(3) . . ? Zn1 O1 Zn2 97.16(19) . . ? P1 O2 Zn3 120.8(3) 1_655 . ? P1 O3 Zn3 119.1(3) . . ? P2 O4 Zn1 129.8(3) . . ? P2 O4 Zn2 135.7(3) . . ? Zn1 O4 Zn2 94.40(18) . . ? P2 O5 Zn2 126.2(3) 1_455 3_665 ? P2 O5 Zn2 128.8(3) 1_455 . ? Zn2 O5 Zn2 100.22(19) 3_665 . ? P2 O6 Zn1 128.9(3) 1_455 . ? C3 O7 Zn2 128.9(4) . . ? C3 O8 Zn3 117.3(4) 1_655 . ? C3 O8 Zn2 122.8(4) 1_655 . ? Zn3 O8 Zn2 119.0(2) . . ? C4 O9 Zn3 109.7(5) . 4_576 ? C4 O10 Zn1 127.8(5) . . ? O11B O11 O11A 150.6(15) . . ? O11B O11 Zn1 80.6(12) . . ? O11A O11 Zn1 70.5(9) . . ? O11 O11A Zn1 65.5(9) . . ? O11 O11B Zn1 62.6(11) . . ? O2 P1 O1 113.5(3) 1_455 . ? O2 P1 O3 111.1(3) 1_455 . ? O1 P1 O3 109.7(3) . . ? O2 P1 C1 106.5(3) 1_455 . ? O1 P1 C1 107.5(3) . . ? O3 P1 C1 108.4(3) . . ? O6 P2 O4 111.7(3) 1_655 . ? O6 P2 O5 112.3(3) 1_655 1_655 ? O4 P2 O5 112.1(3) . 1_655 ? O6 P2 C2 106.1(3) 1_655 3_665 ? O4 P2 C2 106.0(3) . 3_665 ? O5 P2 C2 108.1(3) 1_655 3_665 ? O6 Zn1 O11 116.8(2) . . ? O6 Zn1 O11A 156.5(7) . . ? O11 Zn1 O11A 44.0(7) . . ? O6 Zn1 O1 99.4(2) . . ? O11 Zn1 O1 143.8(2) . . ? O11A Zn1 O1 100.9(7) . . ? O6 Zn1 O10 93.8(2) . . ? O11 Zn1 O10 87.2(2) . . ? O11A Zn1 O10 74.3(7) . . ? O1 Zn1 O10 90.72(19) . . ? O6 Zn1 O4 101.80(19) . . ? O11 Zn1 O4 93.4(2) . . ? O11A Zn1 O4 93.8(7) . . ? O1 Zn1 O4 78.28(19) . . ? O10 Zn1 O4 162.2(2) . . ? O6 Zn1 O11B 80.6(7) . . ? O11 Zn1 O11B 36.8(7) . . ? O11A Zn1 O11B 80.7(10) . . ? O1 Zn1 O11B 173.0(7) . . ? O10 Zn1 O11B 96.3(7) . . ? O4 Zn1 O11B 94.8(7) . . ? O6 Zn1 Zn2 85.61(14) . . ? O11 Zn1 Zn2 136.05(19) . . ? O11A Zn1 Zn2 117.6(7) . . ? O1 Zn1 Zn2 41.77(12) . . ? O10 Zn1 Zn2 131.04(15) . . ? O4 Zn1 Zn2 43.25(13) . . ? O11B Zn1 Zn2 131.5(7) . . ? O1 Zn2 O8 89.62(18) . . ? O1 Zn2 O5 170.48(19) . 3_665 ? O8 Zn2 O5 93.25(17) . 3_665 ? O1 Zn2 O5 97.38(18) . . ? O8 Zn2 O5 172.99(17) . . ? O5 Zn2 O5 79.78(19) 3_665 . ? O1 Zn2 O7 96.99(19) . . ? O8 Zn2 O7 90.67(19) . . ? O5 Zn2 O7 92.05(18) 3_665 . ? O5 Zn2 O7 88.84(18) . . ? O1 Zn2 O4 76.86(18) . . ? O8 Zn2 O4 89.32(19) . . ? O5 Zn2 O4 94.09(17) 3_665 . ? O5 Zn2 O4 91.92(18) . . ? O7 Zn2 O4 173.85(18) . . ? O1 Zn2 Zn1 41.08(13) . . ? O8 Zn2 Zn1 106.97(13) . . ? O5 Zn2 Zn1 129.51(13) 3_665 . ? O5 Zn2 Zn1 78.39(13) . . ? O7 Zn2 Zn1 132.09(14) . . ? O4 Zn2 Zn1 42.34(12) . . ? O2 Zn3 O3 101.0(2) . . ? O2 Zn3 O9 128.6(2) . 4_675 ? O3 Zn3 O9 114.4(2) . 4_675 ? O2 Zn3 O8 105.8(2) . . ? O3 Zn3 O8 108.96(19) . . ? O9 Zn3 O8 96.8(2) 4_675 . ? _diffrn_measured_fraction_theta_max 0.866 _diffrn_reflns_theta_full 29.70 _diffrn_measured_fraction_theta_full 0.866 _refine_diff_density_max 2.430 _refine_diff_density_min -1.131 _refine_diff_density_rms 0.255