Supplementary material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2005

Hyperpolarized ¹²⁹Xe NMR spectroscopic investigation of potentially porous shapepersistent macrocyclic materials

Kristopher J. Ooms, Katie Campbell, Rik R. Tykwinski and Roderick E. Wasylishen*

Supporting Information.

General Experimental Details.

Column chromatography: Silica gel–60 (230–400 mesh) from *General Intermediates of Canada* or *Silicycle*. Thin Layer Chromatography (TLC): Plastic sheets coated with *silica gel G UV₂₅₄* from *Macherey–Nagel*: visualization by UV light. Mp.: *Gallencamp* apparatus; uncorrected. IR spectra: *Nic–Plan IR Microscope* (cast from CH₂Cl₂). ¹H–, ¹³C–NMR: *Varian Gemini–300, –400,* or *–500* instruments at rt in CD₂Cl₂; solvent peaks (5.32 ppm for ¹H and 53.80 ppm for ¹³C) as reference. EI MS (70 eV): *Kratos MS 50* instrument. ESI MS (*m/z*): *Micromass Zabspec oaTOF* instrument; solvents as noted.

Oligomer 6. In dry glassware under N₂, 3,5–diethynylbenzene **4** (47 mg, 0.37 mmol) was dissolved in a mixture of dry, degassed THF (40 mL) and Et₂NH (3 mL). Vinyl triflate **5** (0.35 g, 0.75 mmol) was added to the solution, followed by Pd(PPh₃)₄ (30 mg, 0.026 mmol) and CuI (10 mg, 0.053 mmol). The resulting mixture was stirred at 50

Supplementary material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2005

°C for 14 h. After cooling to room temperature, ether (25 mL) was added, and the resulting solution was washed with saturated NH₄Cl (2 × 25 mL) and dried (MgSO₄). Purification by column chromatography on silica (hexanes/CH₂Cl₂ 2:1) afforded oligomer **6** (0.28 g, 98%) as a golden oil. $R_f = 0.39$ (hexanes/CH₂Cl₂ 2:1). IR (CH₂Cl₂ cast) 3054, 2954, 2873, 2145, 1592, 1492 cm⁻¹; ¹H NMR (300 MHz, CD₂Cl₂) δ 7.51 – 7.45 (m, 8H), 7.39 – 7.33 (m, 12H), 7.20 – 7.18 (m, 4H), 0.96 (t, J = 7.8 Hz, 18H), 0.60 (q, J = 8.0 Hz, 12H); ¹³C {¹H} NMR (125.3 MHz, APT, CD₂Cl₂) δ 157.6, 140.6, 140.4, 134.1, 131.6, 130.7, 130.6, 129.1, 129.0, 128.8, 128.1, 128.0, 123.7, 104.4, 102.1, 96.3, 90.9, 89.7, 7.6, 4.5; EI HRMS calcd. for C₅₄H₅₄Si₂ (M⁺) 758.3764, found 758.3789.

Macrocycle 2. Oligomer **6** (0.11 g, 0.14 mmol) was dissolved in wet THF (25 mL) and treated with TBAF (ca. 2.2 equiv.). The resulting solution was stirred, in the presence of air at room temperature, until TLC analysis indicated complete conversion to the desilylated intermediate. Ether (25 mL) was added, and the resulting solution was washed with saturated NH₄Cl (2 × 25 mL) and dried. The solvent was reduced to ca. 1 mL and the deprotected polyyne was carried on, with no further purification. The deprotected polyyne was oxidatively coupled in the presence of CuI (0.40 g, 2.1 mmol), TMEDA (0.40 mL, 2.6 mmol) and air in dry CH₂Cl₂ (350 mL) for 14 h at rt. Ether (300 mL) was added, and the resulting solution was washed with saturated NH4CO₃ (2 × 75 mL), brine (2 × 75 mL), and dried. The solvent volume was reduced by approximately 80%, and acetone (3 mL) was added, resulting in the formation of a yellow precipitate. Isolation of the precipitate afforded **2** (29 mg, 39%) as an orange–yellow solid that was not sufficiently soluble for meaningful ¹³C NMR analysis. Mp 184 °C (dec.). IR (CH₂Cl₂ cast) 3053, (a *very* weak C=C absorption is

Supplementary material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2005

observed at ca. 2150), 1595, 1486 cm⁻¹; ¹H NMR (400 MHz, CD₂Cl₂) δ 7.60 (t, *J* = 1.5 Hz, 2H), 7.49 – 7.31 (m, 40H), 7.18 (t, *J* = 7.6 Hz, 2H), 7.01 (dd, *J* = 7.9, 1.6 Hz, 4H); ESI MS (NO₂Me, AgOTf added, C₈₄H₄₈) *m/z* (rel. intensity): 1937 ([M + Ag + 3AgOTf]⁺, 19), 1679 ([M + Ag + 2AgOTf]⁺, 53), 1421 ([M + Ag + AgOTf]⁺, 66), 1165 ([M + Ag]⁺, 100).

X-ray Crystallographic studies.

Unit cell parameters and intensity data were obtained at -80 °C on a Bruker PLATFORM/SMART 1000 CCD diffractometer using graphite-monochromated MoK α radiation ($\lambda = 0.71073$ Å). Programs for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker. The structures were solved by direct methods using SHELXS-86¹⁸ and refined by full-matrix least squares on F^2 using SHELXL-93.¹⁹ Data for 1 (C₈₄H₅₀Cl₄N₂), $F_w = 1229.06$; monoclinic crystal system; space group $P2_1/n$ (an alternate setting of $P2_1/c$ [No. 14]), a = 9.7664 (9), b =16.6488 (15), c = 20.6911 (18) Å; $\beta = 101.1778$ (19)°; V = 3300.5 (5) Å³; Z = 2; $\rho_{calcd} =$ 1.237 g cm⁻³; 2θ max = 52.84°; $\mu = 0.227$ mm⁻¹; total data collected = 17480; $R_1 = 0.0790$ (3035 observed reflections with $F_0^2 \ge 2\sigma(F_0^2)$); $wR_2 = 0.1734$ for 379 variables and 6749 unique reflections with $F_0^2 \ge -3\sigma(F_0^2)$; residual electron density = 0.178 and -0.150 e Å⁻³.

- (1) Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467.
- Sheldrick, G. M. SHELXL-93. Program for crystal structure determination, University of Göttingen, Göttingen (Germany), 1993.