Experimental conditions for X-ray scattering

Powder X-ray investigations were carried out with a Guinier film camera and a Guinier Goniometer (Huber Diffraktionstechnik, Germany). Samples in glass capillaries (\emptyset 1 mm) in a temperature-controlled heating stage, quartz-monochromatized CuK_{α} radiation, 30 to 60 min exposure time, calibration with the powder pattern of Pb(NO₃)₂. 2D patterns for aligned samples on a glas plate on a temperature-controlled heating stage (alignement at the sample – glas or at the sample – air interface) were recorded with a 2D detector (HI-STAR, Siemens) using CuK_{α} radiation monochromatized by a Ni filter.

Table S1. X-ray data from Guinier powder patterns (θ_{obs} : experimental scattering angle; d_{obs} : experimental and d_{calc} : calculated d spacing; hk/n: asigned indices for Col_{hex} phases / order of reflection for SmA phases, Parameter used: Lattice parameters or d values used to calculate d_{calc} with an error of the calculated parameters in the order of 0.1 nm)

Compound	Т	Phase	$ heta_{ m obs}$	$d_{\rm obs}$	hk/n	$d_{ m calc}$	$d_{\rm obs}$ - $d_{\rm calc}$	Parameter
	(°C)		(°)	(nm)		(nm)	(nm)	used (nm)
9b	170	Col _{hex}	1.816	2.43	10	2.43	0.00	<i>a</i> = 2.81
	150		1.831	2.41	10	2.43	-0.02	<i>a</i> = 2.81
			3.120	1.41	11	1.40	0.01	
			3.625	1.22	20	1.21	0.01	
	130		1.837	2.40	10	2.42	-0.02	<i>a</i> = 2.80
			3.150	1.40	11	1.40	0.00	
			3.625	1.22	20	1.21	0.01	
	110		1.844	2.39	10	2.41	-0.02	<i>a</i> = 2.78
			3.162	1.40	11	1.39	0.01	
			3.650	1.21	20	1.20	0.01	
9a	72	?	1.871	2.36				
11a	102	SmA	1.414	3.12	1	3.13	-0.01	<i>d</i> = 3.13
			2.813	1.57	2	1.56	0.01	
	92		1.399	3.16	1	3.16	0.00	<i>d</i> = 3.16
			2.800	1.58	2	1.58	0.00	
11b	130	SmA	1.374	3.21	1			<i>d</i> = 3.21
	120		1.365	3.23	1			d = 3.23
	110		1.345	3.28	1			<i>d</i> = 3.28

Figure S1. The inner diffuse scattering in the SmA phase of **11b**: **a**) diffuse X-ray scattering scanned along a conical segment ($\Delta \chi = 60^{\circ}$) of the 2D-pattern about a line perpendicular to the layer normal, **b**) distribution of the intensity integrated over θ from 3.2 to 3.9° (d ≈ 2.50 nm) showing a fit by two Gaussian functions and the corresponding position of the intensity maxima, **c**) distribution of the intensity for the outer diffuse scattering integrated over θ from 7.5 to 10.5° (d ≈ 0.50 nm, maxima at about 116 and 298°) for comparison, [**b**) and **c**): relative intensity calculated by I_{rel} = I(120 °C) / I(isotropic liquid). The black arrow points to the position of the intensity maximum for the layer reflections.]

