Electronic Supplementary Information for

Mesogenic, Optical, and Dielectric Properties of 5-Substituted 2-[12-(4pentyloxyphenyl)-p-carboran-1-yl] [1,3]dioxanes

Takashi Nagamine,¹ Adam Januszko,² Piotr Kaszynski,²* Kiminori Ohta,¹ and Yasuyuki

 $Endo^1$

¹ Tohoku Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai 981-8558, Japan

² Organic Materials Research Group, Department of Chemistry, Vanderbilt University,

Nashville, TN 37235

Table of Content:

1.	Numerical Analysis of T _{NI} for series 2[n]	S2
2.	Optical Measurements and Order Parameter Calculations	S2
3.	Dielectric data	S3
4.	Details for Calculations in the Nematic Phase	
5.	Quantum-mechanical computational details	
6.	Dipole moment and polarizability computational results for 1[4]	S6
7.	Preparative Details	S7
8.	Archive files for HF/6-31G(d) calculations	S20
9.	References	S30

1. Numerical Analysis of T_{NI} for series 2[n]

Fig. S1 Nematic-isotropic transition temperatures T_{NI} for **2**[**n**] as a function of the chain length *n*. Best fit <u>2-parameter</u> functions of type 1: $T_{NI} = 86 + \exp(5.901 - 0.441 \cdot \sqrt{n})$ for odd n excluding **1**[**1**], and $T_{NI} = 86 + \exp(5.783 - 0.405 \cdot \sqrt{n})$ for even n excluding **1**[**2**]; $r^2 > 0.999$. Best fit <u>2-parameter</u> functions of type 2: $T_{NI} = 89 \cdot (19.26 + n)/(4.72 + n)$; $r^2 > 0.999$.

2. Optical Measurements and Order Parameter Calculations

 $\sim \sim$

 \square

$C_5H_{11}O$ C_4H_9							
Temperature	n _e	n _o	Δn	n _{avrg}			
/ °C							
71.5	1.5066	1.680	0.173	1.566			
72.6	1.5059	1.678	0.172	1.565			
74.8	1.5051	1.676	0.171	1.564			
77.5	1.5046	1.674	0.170	1.563			
80.1	1.5040	1.673	0.169	1.562			
82.2	1.5033	1.671	0.168	1.561			
85.0	1.5030	1.6705	0.168	1.561			
86.0	1.5024	1.6700	0.1675	1.560			

Table S1. Refractive indices of 1[4] measured at $\lambda = 589$ nm as a function of temperature.

Orientational order parameter S was calculated from equation 1¹

$$S = \frac{\alpha}{\Delta \alpha} \bullet \frac{n_e^2 - n_o^2}{n_{avrg}^2 - 1}$$
 Eq 1

or by using the Vuks model (Eq 2).²

$$S = \frac{3\varepsilon_0 M_w}{\Delta \alpha N_A d} \bullet \frac{n_e^2 - n_o^2}{n_{avrg}^2 + 2}$$
 Eq 2

where $n_{avrg}^2 = (n_e^2 + 2n_o^2)/3$, $M_w = 448.6$ g/mol, d is assumed to be 1.0 g/cm³, and $\Delta \alpha$ is computed (vide infra).

3. **Dielectric Data**

Dielectric parameters in Table S2 for low concentration solutions of additives 1[4] to 6-CHBT were obtained from by averaging 5 measurements of each solution in a single cell. Standard deviation of the resulting values $\leq \pm 0.03$. Dielectric permittivity values for the host were obtained by averaging results for 3 cells. All measurements were run at 24 °C. Error on concentration values $\sim 1.5\%$

Table S2. Dielectric parameters for 1[4] as a function of concentration. Average of 5 runs in a single cell.

_/

parameter	Mole fraction						
	0.00 (host)	0.055	0.107	0.138			
V_{TH10} /V	1.55 ±0.02	1.56 ±0.01	1.57 ±0.01	1.62 ±0.01			
£ 3	12.0 ±0.2	11.65 ±0.03	11.14 ±0.03	10.99 ±0.05			
ϵ_{\perp}	4.0 ±0.1	4.04 ±0.01	4.01 ±0.01	3.99 ±0.03			
Δε	8.0 ±0.15	7.60 ±0.03	7.12 ±0.03	7.00 ±0.03			

$C_5H_{11}O$

Dielectric parameters for 1[4] were obtained from 3 cells and each was measured 3 times over the temperature range of 75-105 °C. The resulting values were averaged and are shown in Table S3. Standard deviation of the resulting values is $\leq \pm 0.1$.

Table S3. Dielectric parameters for 1[4] as a function of temperature. Average of 3 runs for 3 cells. Std for $\varepsilon_{||}$ and ε_{\perp} is 0.1, and for $\Delta \varepsilon$ is 0.01.

C ₅ H ₁₁ O-		C ₄ H	9
Temperature	٨٤	٤ı	8
°C		c_{\perp}	C
75	0.42	3.51	3.09
76	0.42	3.50	3.08
77	0.42	3.50	3.08
78	0.41	3.49	3.07
79	0.42	3.49	3.07
80	0.41	3.48	3.07
81	0.41	3.47	3.06
82	0.41	3.46	3.06
83	0.40	3.46	3.05
84	0.41	3.45	3.05
85	0.40	3.45	3.05
86	0.40	3.44	3.05
87	0.40	3.44	3.04
88	0.39	3.42	3.04
89	0.38	3.40	3.05
90	0.38	3.40	3.03
91	0.38	3.40	3.02
92	0.37	3.39	3.02
93	0.34	3.36	3.02
94	0.37	3.37	3.02
95	0.35	3.35	3.01
96	0.33	3.34	3.01
97	0.33	3.34	3.01
98	0.26	3.28	3.03
99	0.11	3.16	3.05
100	0.02	3.09	3.07
101	-0.01	3.06	3.07
102	-0.01	3.06	3.06
103	0.02	3.07	3.06
104	0.000	3.06	3.05
105	0.01	3.07	3.05
106	0.00	3.04	3.04
107	0.03	3.07	3.04
108	0.01	3.05	3.03
109	-0.01	3.02	3.03
110	0.01	3.06	3.03

,o-_

4. Details for Calculations in the Nematic Phase

The Equations derived from the Maier-Meier theory used in this work were adopted from literature^{3,4} and had the following form:

$$\Delta \varepsilon = \frac{NFh}{\varepsilon_0} \left\{ \Delta \alpha - \frac{F\mu_{eff}^2}{2k_B T} \left(1 - 3\cos^2 \beta \right) \right\} S$$
$$\varepsilon_{\parallel} = 1 + \frac{NFh}{\varepsilon_0} \left\{ \overline{\alpha} + \frac{2}{3} \Delta \alpha S + \frac{F\mu_{eff}^2}{3k_B T} \left[1 - \left(1 - 3\cos^2 \beta \right) S \right] \right\}$$
$$\varepsilon_{\perp} = 1 + \frac{NFh}{\varepsilon_0} \left\{ \overline{\alpha} - \frac{1}{3} \Delta \alpha S + \frac{F\mu_{eff}^2}{3k_B T} \left[1 + \frac{1}{2} \left(1 - 3\cos^2 \beta \right) S \right] \right\}$$

All quantities were in SI units.

• Reaction field factors F and h for the pure 1[4] were calculated using the experimental average permittivity and refractive index. For calculations involving extrapolated dielectric parameters for 1[4], reaction field factors F and h were calculated for the pure host 6-CHBT using literature⁵ values for $n_{\perp} = 1.5212$ and $n_{\parallel} = 1.6610$ and experimental average permittivity. Thus, reaction field parameters F and h were using the following equations:

$$F = \frac{(2\varepsilon_s + 1)(n^2 + 2)}{3(2\varepsilon_s + n^2)} \qquad h = \frac{3\varepsilon_s}{(2\varepsilon_s + 1)}$$

The former is a Dunmur-Toriyama expression for $F.^{6}$

	~ °C	$\epsilon_{\rm avrg}$	\tilde{n}^2_{avrg}	F	h
1[4]	85	3.18	2.44	1.237	1.296
6-CHBT	24	6.27	2.46	1.342	1.289

5. Quantum-mechanical computational details

Quantum-mechanical calculations were carried out using Gaussian 98⁷ suite of programs. Geometry optimizations for unconstrained conformers of **1[4]** with alkyl chains in the most extended forms were undertaken at the HF/6-31G(d) and B3LYP/3-21G levels of theory using default convergence limits.

6. Dipole moment and polarizability computational results for 1[4]

In all these calculations long molecular axes are oriented along the x axes.

Dipole Moments (D) at the HF/6-31G* level of theory (full geometry optimization)

conformer A Dipole moment (Debye): X= -1.5463 Y= 1.5440 Z= -0.9778 Tot= 2.3940 conformer **B** Dipole moment (Debye): X= -1.7656 Y= -0.7244 Z= 0.2921 Tot= 1.9307 conformer C (syn) Dipole moment (Debye): X= -1.5956 Y= -0.8343 Z= 1.3418 Tot= 2.2455 conformer C (anti) Dipole moment (Debye): X= 1.5436 Y= 1.4551 Z= 0.6326 Tot= 2.2137 conformer **D** (syn) Dipole moment (Debye): X= -1.8197 Y= 1.0532 Z= 0.1678 Tot= 2.1092 conformer **D** (anti) Dipole moment (Debye): X= 1.7613 Y= -0.8804 Z= 0.6423 Tot= 2.0712 conformer **E** (syn) Dipole moment (Debye): X= -1.6915 Y= -1.1599 Z= 1.0725 Tot= 2.3145 conformer E (anti) Dipole moment (Debye): X = -1.5986 Y = -1.5259 Z = 0.4719 Tot= 2.2597 conformer F (syn) Dipole moment (Debye): X = -1.7397 Y = 0.9756 Z = 0.5976 Tot = 2.0822conformer F (anti) Dipole moment (Debye): X = 1.6572 Y = -1.1476 Z = 0.2133 Tot = 2.0270

Electronic polarizabilities (au) at the B3LYP/3-21G level of theory (full geometry optimization) for selected conformers of **1[4]**

<u>conformer A</u> Exact polarizability:	495.325	-3.203	264.271	-0.969	-13.939	247.030
<u>conformerB</u> Exact polarizability:	490.525	-3.808	273.499	1.610	9.954	242.280
<u>conformer C (anti)</u> Exact polarizability:	495.381	2.107	272.259	0.826	8.426	238.793
<u>conformer D (syn)</u> Exact polarizability:	488.053	3.043	281.919	-2.343	1.224	235.836
<u>conformer E (anti)</u> Exact polarizability:	492.909	1.313	276.318	-4.785	0.633	236.187
<u>conformer F (syn)</u> Exact polarizability:	490.440	3.952	276.147	-4.038	10.508	239.047

7. Preparative Details

NMR spectra were obtained at the 270 MHz (¹H) or 67.8 MHz (¹³C) in CDCl₃ and referenced to TMS. Elemental analysis was provided by Instrumental Analysis Center for Chemistry, Graduate School of Science, Tohoku University or at Atlantic Microlab, GA. *p*-Carborane was purchased from Katchem s. r. o. (Prague, Czech Republic). Other chemicals were purchased from Aldrich or Tokyo Kasei Ltd.

trans-5-Alkyl-2-[12-(4-pentyloxyphenyl)-*p*-carboran-1-yl)[1,3]dioxanes (1[n]) and *trans*-5-Aryl-2-[12-(4-pentyloxyphenyl)-*p*-carboran-1-yl)[1,3]dioxanes 2[n] and 3[n]. General procedure. A solution of 12-(4-pentyloxyphenyl)-*p*-carborane-1-carbaldehyde (4, 500 mg, 1.50 mmol), appropriate 2-alkyl-1,3-propanediol (5[n], 2.0 equiv.) or 2-aryl-1,3-propanediol (6[n] or 7[n], 1.3 equiv.) and a catalytic amount of *p*-toluenesulfonic acid in toluene or xylene (5 mL) was refluxed for 18 hr using Dean-Stark water trap. The mixture was poured into saturated aqueous NaHCO₃ and extracted with AcOEt. The organic layer was washed with brine, dried (MgSO₄) and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (5[n]: *n*-hexane/benzene, 8:1; 6[n] and 7[n]: *n*-hexane/Et₂O, 15:1) and subsequently recrystallized to give colorless crystalline product.

trans-5-Methyl-2-[12-(4-pentyloxyphenyl)-*p*-carboran-1-yl)[1,3]dioxane (1[1]). Yield 36%, rods (*n*-hexane): mp 137-139 °C; ¹H NMR δ (ppm) 0.64 (d, *J* = 6.8 Hz, 3 H), 0.90 (t, *J* = 7.2 Hz, 3 H), 1.27-1.45 (m, 4 H), 1.50-3.75 (brm, 10 H), 1.73 (quint., *J* = 7.0 Hz, 2 H), 1.90-2.05 (m, 1 H), 3.16 (t, *J* = 11.5 Hz, 2 H), 3.87 (t, *J* = 6.6 Hz, 2 H), 3.98 (dd, *J* = 4.9 Hz, 11.9 Hz, 2 H), 4.18 (s, 1 H), 6.65 (d, *J* = 8.9 Hz, 2 H), 7.09 (d, *J* = 8.9 Hz, 2 H). Anal. Calcd. for C₁₈H₃₄B₁₀O₃: C, 53.17; H, 8.43. Found: C, 53.35; H, 8.44.

trans-5-Ethyl-2-[12-(4-pentyloxyphenyl)-*p*-carboran-1-yl)[1,3]dioxane (1[2]). Yield 41%, prisms (*n*-hexane): mp 116-117 °C; ¹H NMR δ (ppm) 0.85 (t, J = 7.4 Hz, 3H), 0.91 (t, J = 7.0 Hz, 3 H), 1.02 (quint., J = 7.3 Hz, 2H), 1.28-1.46 (m, 4H), 1.50-3.75 (brm, 10H), 1.74 (quint., J = 7.0 Hz, 2 H), 1.81 (ttt, J = 4.5 Hz, 6.8 Hz, 11.3 Hz, 1H), 3.20 (t, J = 11.5 Hz, 2H), 3.87 (t, J = 6.5 Hz, 2H), 4.06 (dd, J = 4.6 Hz, 11.9 Hz, 2H), 4.18 (s, 1H), 6.66 (d, J = 8.9 Hz, 2H), 7.10 (d, J = 9.2 Hz, 2H). Anal. Calcd. for C₁₉H₃₆B₁₀O₃: C, 54.26; H, 8.63. Found: C, 54.52; H, 8.90.

trans-5-Propyl-2-[12-(4-pentyloxyphenyl)-*p*-carboran-1-yl)[1,3]dioxane (1[3]). Yield 34%, prisms (*n*-hexane): mp 86-87 °C; ¹H NMR δ (ppm) 0.86 (t, J = 7.2 Hz, 3H), 0.91 (t, J = 7.0 Hz, 3H), 0.91 (sext, J = 7.6 Hz, 2H), 1.22 (quint., J = 7.4 Hz, 2H), 1.30-1.44 (m, 4H), 1.50-3.75 (brm, 10H), 1.73 (quint., J = 6.9 Hz, 2H), 1.90 (ttt, J = 4.8 Hz, 6.8 Hz, 11.3 Hz, 1H), 3.19 (t, J = 11.6 Hz, 2H), 3.87 (t, J = 6.5 Hz, 2H), 4.03 (dd, J = 4.6 Hz, 11.9 Hz, 2H), 4.18 (s, 1 H), 6.65 (d, J = 8.9 Hz, 2H), 7.09 (d, J = 8.9 Hz, 2H). Anal. Calcd. for C₂₀H₃₈B₁₀O₃: C, 55.27; H, 8.81. Found: C, 55.38; H, 8.94.

trans-5-Butyl-2-[12-(4-pentyloxyphenyl)-*p*-carboran-1-yl)[1,3]dioxane (1[4]). Yield 45%, cubes (*n*-hexane/2-propanol): mp 68 °C; ¹H NMR δ 0.85-0.99 (m, 2H), 0.85 (t, *J* = 6.9 Hz, 3H), 0.90 (t, *J* = 6.8 Hz, 3H), 1.12-1.42 (m, 8H), 1.50-3.75 (brm, 10 H), 1.73 (quint., *J* = 7.0 Hz, 2H), 1.87 (ttt, *J* = 4.7 Hz, 6.8 Hz, 11.4 Hz, 1H), 3.18 (t, *J* = 11.4 Hz, 2H), 3.86 (t, *J* = 6.5 Hz, 2H), 4.03 (dd, *J* = 4.7 Hz, 11.8 Hz, 2H), 4.17 (s, 1H), 6.34 (d, *J* = 8.9 Hz, 2H), 7.09 (d, *J* = 8.6 Hz, 2H); MS: *m*/*z* = 448 (M⁺), 143 (100 %); HRMS: calcd. for C₂₁H₄₀B₁₀O₃: 448.3980. found. 448.3993. Anal. Calcd. for C₂₁H₄₀B₁₀O₃: C, 56.22; H, 8.99. Found: C, 55.96; H, 9.03.

trans-5-Pentyl-2-[12-(4-pentyloxyphenyl)-*p*-carboran-1-yl)[1,3]dioxane (1[5]). Yield 51%, cubes (*n*-hexane/2-propanol): mp 89-91 °C; ¹H NMR δ 0.85-0.99 (m, 2H), 0.86 (t, *J* = 6.7 Hz, 3H), 0.90 (t, *J* = 6.7 Hz, 3H), 1.16-1.43 (m, 10H), 1.50-3.75 (brm, 10H), 1.73 (quint., *J* = 7.0 Hz, 2H), 1.87 (ttt, *J* = 4.5 Hz, 6.7 Hz, 11.3 Hz, 1H), 3.18 (t, *J* = 11.6 Hz, 2H), 3.86 (t, *J* = 6.5 Hz, 2H), 1.87 (ttt, *J* = 4.5 Hz, 6.7 Hz, 11.3 Hz, 1H), 3.18 (t, *J* = 11.6 Hz, 2H), 3.86 (t, *J* = 6.5 Hz, 2H), 1.87 (ttt, *J* = 4.5 Hz, 6.7 Hz, 11.3 Hz, 1H), 3.18 (t, *J* = 11.6 Hz, 2H), 3.86 (t, *J* = 6.5 Hz, 6.5 Hz, 6.5 Hz, 6.7 Hz, 11.3 Hz, 1H), 3.18 (t, *J* = 11.6 Hz, 2H), 3.86 (t, *J* = 6.5 Hz, 6.5 Hz, 6.7 Hz, 11.3 Hz, 1H), 3.18 (t, *J* = 11.6 Hz, 2H), 3.86 (t, *J* = 6.5 Hz, 6.5 Hz, 6.7 Hz, 11.3 Hz, 1H), 3.18 (t, *J* = 11.6 Hz, 2H), 3.86 (t, *J* = 6.5 Hz, 6.7 Hz, 11.3 Hz, 1H), 3.18 (t, *J* = 11.6 Hz, 2H), 3.86 (t, *J* = 6.5 Hz, 6.7 Hz, 11.3 Hz, 1H), 3.18 (t, *J* = 11.6 Hz, 2H), 3.86 (t, *J* = 6.5 Hz, 6.7 Hz, 11.3 Hz, 1H), 3.18 (t, *J* = 11.6 Hz, 2H), 3.86 (t, *J* = 6.5 Hz, 6.7 Hz, 11.3 Hz, 1H), 3.18 (t, *J* = 11.6 Hz, 2H), 3.86 (t, *J* = 6.5 Hz, 6.7 Hz, 11.3 Hz, 1H), 3.18 (t, *J* = 11.6 Hz, 2H), 3.86 (t, *J* = 6.5 Hz, 6.7 Hz, 11.3 Hz, 1H), 3.18 (t, *J* = 11.6 Hz, 2H), 3.86 (t, *J* = 6.5 Hz, 6.7 Hz, 11.3 Hz, 1H), 3.18 (t, *J* = 11.6 Hz, 2H), 3.86 (t, *J* = 6.5 Hz, 6.7 Hz, 11.3 Hz, 1H), 3.18 (t, *J* = 11.6 Hz, 2H), 3.86 (t, *J* = 6.5 Hz, 6.7 Hz, 11.3 Hz, 1H), 3.18 (t, J = 11.6 Hz, 2H), 3.86 (t, J = 6.5 Hz, 6.7 Hz, 11.8 Hz, 1H), 3.18 (t, J = 11.6 Hz, 2H), 3.86 (t, J = 6.5 Hz, 6.7 Hz, 11.8 Hz, 1H), 3.18 (t, J = 11.6 Hz, 2H), 3.86 (t, J = 6.5 Hz, 6.7 Hz, 11.8 Hz, 1H), 3.18 (t, J = 11.6 Hz, 1H), 3.18 (t,

Hz, 2H), 4.03 (dd, J = 4.6 Hz, 11.9 Hz, 2H), 4.17 (s, 1 H), 6.65 (d, J = 9.0 Hz, 2H), 7.09 (d, J = 9.0 Hz, 2H); MS: m/z = 462 (M⁺), 69 (100 %); HRMS: calcd. for C₂₂H₄₂B₁₀O₃: 462.4137. found. 462.4167. Anal. Calcd. for C₂₂H₄₂B₁₀O₃: C, 57.11; H, 9.15. Found: C, 57.20; H, 9.17.

trans-5-Hexyl-2-[12-(4-pentyloxyphenyl)-*p*-carboran-1-yl)[1,3]dioxane (1[6]). Yield 31%, needles (*n*-hexane/2-propanol): mp 62 °C; ¹H NMR δ 0.85-0.99 (m, 2H), 0.86 (t, *J* = 6.8 Hz, 3H), 0.90 (t, *J* = 7.0 Hz, 3H), 1.15-1.44 (m, 12H), 1.50-3.75 (brm, 10H), 1.73 (quint., *J* = 6.9 Hz, 2H), 1.87 (ttt, *J* = 4.7Hz, 6.6Hz, 11.3 Hz, 1H), 3.18 (t, *J* = 11.5 Hz, 2H), 3.86 (t, *J* = 6.6 Hz, 2H), 4.03 (dd, *J* = 4.7 Hz, 11.8 Hz, 2H), 4.17 (s, 1H), 6.65 (d, *J* = 8.9 Hz, 2H), 7.09 (d, *J* = 8.9 Hz, 2H); MS: *m*/*z* = 476 (M⁺), 69 (100 %); HRMS: calcd. for C₂₃H₄₄B₁₀O₃: 476.4294. found. 476.4299. Anal. Calcd. for C₂₃H₄₄B₁₀O₃: C, 57.95; H, 9.30. Found: C, 58.07; H, 9.40.

trans-5-Heptyl-2-[12-(4-pentyloxyphenyl)-*p*-carboran-1-yl)[1,3]dioxane (1[7]). Yield 42%, needles (*n*-hexane/2-propanol): mp 68-69 °C; ¹H NMR δ 0.85-0.99 (m, 2 H), 0.87 (t, *J* = 6.8 Hz, 3H), 0.90 (t, *J* = 7.2 Hz, 3H), 1.15-1.45 (m, 14H), 1.50-3.75 (brm, 10H), 1.73 (quint., *J* = 7.0 Hz, 2H), 1.87 (ttt, *J* = 4.7 Hz, 6.5 Hz, 11.3 Hz, 1H), 3.18 (t, *J* = 11.6 Hz, 2H), 3.87 (t, *J* = 6.6 Hz, 2H), 4.03 (dd, *J* = 4.7 Hz, 11.9 Hz, 2 H), 4.17 (s, 1H), 6.65 (d, *J* = 9.0 Hz, 2H), 7.09 (d, *J* = 9.0 Hz, 2H); MS: *m*/*z* = 490 (M⁺), 185 (100 %); HRMS: calcd. for C₂₄H₄₆B₁₀O₃: 490.4456. found. 490.4445. Anal. Calcd. for C₂₄H₄₆B₁₀O₃: C, 58.74; H, 9.45. Found: C, 58.83; H, 9.55.

trans-5-Octyl-2-[12-(4-pentyloxyphenyl)-*p*-carboran-1-yl)[1,3]dioxane (1[8]). Yield 45%, cubes (*n*-hexane/2-propanol): mp 58 °C; ¹H NMR δ 0.85-0.99 (m, 2H), 0.87 (t, *J* = 6.8 Hz, 3H), 0.90 (t, *J* = 7.1 Hz, 3H), 1.15-1.45 (m, 16H), 1.50-3.75 (brm, 10H), 1.73 (quint., *J* = 7.1 Hz, 2 H), 1.87 (ttt, *J* = 4.7 Hz, 6.7 Hz, 11.3 Hz, 1H), 3.18 (t, *J* = 11.5 Hz, 2H), 3.86 (t, *J* = 6.5 Hz, 2 H), 4.03 (dd, *J* = 4.8 Hz, 11.8 Hz, 2H), 4.17 (s, 1H), 6.65 (d, *J* = 9.0 Hz, 2H), 7.09 (d, *J* = 8.9 Hz, 2H); MS: *m*/*z* = 504 (M⁺), 199 (100 %); HRMS: calcd. for C₂₅H₄₈B₁₀O₃: 504.4607; found. 504.4605. Anal. Calcd. for C₂₅H₄₈B₁₀O₃: C, 59.49; H, 9.59. Found: C, 59.70; H, 9.72.

trans-5-Nonyl-2-[12-(4-pentyloxyphenyl)-*p*-carboran-1-yl)[1,3]dioxane (1[9]). Yield 41%, prisms (*n*-hexane/2-propanol): mp 53 °C; ¹H NMR δ 0.85-0.99 (m, 2 H), 0.87 (t, J = 6.8 Hz, 3 H), 0.90 (t, J = 6.9 Hz, 3H), 1.15-1.45 (m, 18H), 1.50-3.75 (brm, 10 H), 1.73 (quint., J = 6.9 Hz, 2H), 1.87 (ttt, J = 4.6 Hz, 6.7 Hz, 11.3 Hz, 1H), 3.18 (t, J = 11.5 Hz, 2 H), 3.86 (t, J = 6.5 Hz, 2 H), 4.03 (dd, J = 4.7 Hz, 11.8 Hz, 2H), 4.17 (s, 1H), 6.65 (d, J = 8.9 Hz, 2H), 7.09 (d, J = 9.0 Hz, 2H); MS: m/z = 518 (M⁺), 518 (100 %); HRMS: calcd. for C₂₆H₅₀B₁₀O₃: 518.4763. found. 518.4745. Anal. Calcd. for C₂₆H₅₀B₁₀O₃: C, 60.20; H, 9.71. Found: C, 60.23; H, 9.72.

trans-5-Decyl-2-[12-(4-pentyloxyphenyl)-*p*-carboran-1-yl)[1,3]dioxane (1[10]). Yield 38%, cubes (*n*-hexane/2-propanol): mp 50-52 °C; ¹H NMR δ 0.86-0.99 (m, 2H), 0.88 (t, *J* = 6.9 Hz, 3H), 0.90 (t, *J* = 7.1 Hz, 3H), 1.15-1.45 (m, 20H), 1.50-3.75 (brm, 10H), 1.73 (quint., *J* = 6.8 Hz, 2H), 1.87 (ttt, *J* = 4.6 Hz, 6.7 Hz, 11.3 Hz, 1H), 3.18 (t, *J* = 11.5 Hz, 2H), 3.87 (t, *J* = 6.5 Hz, 2H), 4.03 (dd, *J* = 4.7 Hz, 11.9 Hz, 2H), 4.17 (s, 1H), 6.65 (d, *J* = 9.1 Hz, 2H), 7.09 (d, *J* = 8.9 Hz, 2H); MS: *m*/*z* = 532 (M⁺), 69, 43 (100 %); HRMS: calcd. for C₂₇H₅₂B₁₀O₃: 532.4919. found. 532.4909. Anal. Calcd. for C₂₇H₅₂B₁₀O₃: C, 60.87; H, 9.84. Found: C, 61.10; H, 10.01.

trans-5-(4-Methoxyphenyl)-2-[12-(4-pentyloxyphenyl)-*p*-carboran-1-yl)[1,3]-dioxane (2[1]). : Yield 47%, needles (*n*-hexane): mp 128 °C; ¹H NMR δ 0.91 (t, *J* = 7.0 Hz, 3H), 1.25-1.45 (m, 4H), 1.50-3.75 (brm, 10H), 1.73 (quint., *J* = 6.8 Hz, 2H), 3.06 (tt, *J* = 4.5, 11.3 Hz, 1H), 3.65 (t, *J* = 11.8 Hz, 2H), 3.77 (s, 3H), 3.87 (t, *J* = 6.6 Hz, 2H), 4.12 (dd, *J* = 4.6 Hz, 11.9 Hz, 2H), 4.34 (s, 1H), 6.66 (d, *J* = 8.9 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 7.02 (d, *J* = 8.6 Hz, 2H), 7.10 (d, *J* = 8.6 Hz, 2H): ¹³C NMR δ 14.0, 22.4, 28.1, 28.9, 39.4, 55.3, 68.0, 72.5, 80.0, 84.6, 98.6, 113.7, 114.3, 128.2, 128.6, 128.7, 128.8, 159.0, 159.2; MS: *m*/*z* = 498 (M⁺), 43, 134 (100 %); HRMS: calcd for C₂₄H₃₈B₁₀O₄: 498.3773; found 498.3401. Anal. Calcd. for C₂₄H₃₈B₁₀O₄: C, 57.81; H, 7.68. Found: C, 57.65; H, 7.72.

trans-5-(4-Ethoxyphenyl)-2-[12-(4-pentyloxyphenyl)-*p*-carboran-1-yl)[1,3]-dioxane (2[2]). Yield 72%, needles (*n*-hexane): mp 171°C; ¹H NMR δ 0.91 (t, *J* = 7.0 Hz, 3H), 1.25-1.45 (m, 4H), 1.39 (t, *J* = 6.9 Hz, 3H), 1.50-3.75 (brm, 10H), 1.73 (quint., *J* = 6.8 Hz, 2H), 3.05 (tt, *J* = 4.5, 11.3 Hz, 1H), 3.64 (t, *J* = 11.6 Hz, 2H), 3.87 (t, *J* = 6.5 Hz, 2H), 3.99 (q, *J* = 7.0 Hz, 2H), 4.12 (dd, *J* = 4.7 Hz, 12.0 Hz, 2H), 4.34 (s, 1H), 6.66 (d, *J* = 8.9 Hz, 2H), 6.82 (d, *J* = 8.6 Hz, 2H), 7.00 (d, *J* = 8.6 Hz, 2H), 7.10 (d, *J* = 8.9 Hz, 2H); MS: *m*/*z* = 512 (M⁺), 43, 120, 148 (100 %); HRMS: calcd for C₂₅H₄₀B₁₀O₄: 512.3929; found 512.3918. Anal. Calcd. for C₂₅H₄₀B₁₀O₄: C, 58.57; H, 7.86; Found: C, 58.68; H, 7.81.

trans-5-(4-Propoxyphenyl)-2-[12-(4-pentyloxyphenyl)-*p*-carboran-1-yl)[1,3]-dioxane (2[3]). Yield 72%, needles (*n*-hexane): mp 161 °C; ¹H NMR δ 0.91 (t, *J* = 7.0 Hz, 3H), 1.01 (t, *J* = 7.4 Hz, 3H), 1.25-1.45 (m, 4H), 1.50-3.75 (brm, 10H), 1.73 (quint., *J* = 6.8 Hz, 2H), 1.75 (sext., *J* = 7.0 Hz, 2H), 3.05 (tt, *J* = 4.4, 11.3 Hz, 1H), 3.64 (t, *J* = 11.6 Hz, 2H), 3.87 (t, *J* = 6.5 Hz, 4H), 4.12 (dd, *J* = 4.6 Hz, 11.9 Hz, 2H), 4.34 (s, 1H), 6.66 (d, *J* = 8.6 Hz, 2H), 6.82 (d, *J* = 8.4 Hz, 2H), 7.01 (d, *J* = 8.6 Hz, 2H), 7.10 (d, *J* = 8.6 Hz, 2H); MS: *m*/*z* = 526 (M⁺), 43, 120,

162 (100 %); HRMS: calcd for $C_{26}H_{42}B_{10}O_4$: 526.4086; found 526.4097. Anal. Calcd. for $C_{26}H_{42}B_{10}O_4$: C, 59.29; H, 8.04; Found: C, 59.45; H, 8.09.

trans-5-(4-Butoxyphenyl)-2-[12-(4-pentyloxyphenyl)-*p*-carboran-1-yl)[1,3]-dioxane (2[4]). Yield 34%, needles (*n*-hexane): mp 139-140 °C; ¹H NMR δ 0.91 (t, *J* = 7.0 Hz, 3H), 0.96 (t, *J* = 7.4 Hz, 3H), 1.25-1.45 (m, 4H), 1.50-3.75 (brm, 10H), 1.47 (sext., *J* = 7.5 Hz, 2H), 1.73 (quint., *J* = 6.2 Hz, 2H), 1.74 (quint., *J* = 6.8 Hz, 2H), 3.05 (tt, *J* = 4.6, 11.3 Hz, 1H), 3.64 (t, *J* = 11.6 Hz, 2H), 3.87 (t, *J* = 6.2 Hz, 2H), 3.92 (t, *J* = 6.5 Hz, 2H), 4.12 (dd, *J* = 4.7 Hz, 11.7 Hz, 2H), 4.34 (s, 1H), 6.66 (d, *J* = 8.9 Hz, 2H), 6.82 (d, *J* = 8.4 Hz, 2H), 7.00 (d, *J* = 8.9 Hz, 2H), 7.10 (d, *J* = 8.9 Hz, 2H); MS: *m*/*z* = 540 (M⁺), 43, 120, 176 (100 %); HRMS: calcd for C₂₇H₄₄B₁₀O₄: 540.4243; found 540.4239. Anal. Calcd. for C₂₇H₄₄B₁₀O₄: C, 59.97; H, 8.20. Found: C, 60.15; H, 8.24.

trans-5-(4-Pentyloxyphenyl)-2-[12-(4-pentyloxyphenyl)-*p*-carboran-1-yl)[1,3]dioxane (2[5]). Yield 42%, needles (*n*-hexane): mp 144 °C; ¹H NMR δ 0.91 (t, *J* = 6.9 Hz, 3H), 0.92 (t, *J* = 6.6 Hz, 3H), 1.25-1.45 (m, 8H), 1.50-3.75 (brm, 10H), 1.68-1.82 (m, 4H), 3.05 (tt, 4.5, 11.6 Hz, 1H), 3.64 (t, *J* = 11.8 Hz, 2H), 3.87 (t, *J* = 6.5 Hz, 2H), 3.90 (t, *J* = 6.6 Hz, 2H), 4.11 (dd, *J* = 4.7 Hz, 11.7 Hz, 2H), 4.34 (s, 1 H), 6.66 (d, *J* = 8.9 Hz, 2H), 6.82 (d, *J* = 8.6 Hz, 2H), 7.00 (d, *J* = 8.6 Hz, 2H), 7.10 (d, *J* = 8.9 Hz, 2H); ¹³C NMR δ 14.0, 22.4, 28.09, 28.12, 28.8, 28.9, 39.3, 67.85, 67.89, 72.4, 79.9, 84.5, 113.5, 114.6, 128.0, 128.3, 128.4, 158.3, 158.9; MS: *m*/*z* = 554 (M⁺), 43, 120, 190 (100 %); HRMS: calcd. for C₂₈H₄₆B₁₀O₄: 554.4399; found: 554.4401. Anal. Calcd. for C₂₈H₄₆B₁₀O₄: C, 60.62; H, 8.36. Found: C, 60.59; H, 8.19.

trans-5-(4-Hexyloxyphenyl)-2-[12-(4-pentyloxyphenyl)-*p*-carboran-1-yl)[1,3]dioxane (2[6]). Yield 59%, needles (*n*-hexane): mp 145 °C; ¹H NMR δ 0.89 (t, J = 6.5 Hz, 3H), 0.91 (t, J = 6.8 Hz, 3H), 1.25-1.45 (m, 10H), 1.50-3.75 (brm, 10H), 1.65-1.82 (m, 4H), 3.05 (tt, 4.7, 11.5 Hz, 1H), 3.64 (t, J = 11.6 Hz, 2H), 3.87 (t, J = 6.8 Hz, 2H), 3.90 (t, J = 6.5 Hz, 2H), 4.11 (dd, J = 4.7 Hz, 11.7 Hz, 2H), 4.34 (s, 1H), 6.65 (d, J = 8.9 Hz, 2H), 6.82 (d, J = 8.9 Hz, 2H), 7.00 (d, J = 8.9 Hz, 2H), 7.10 (d, J = 9.2 Hz, 2H); ¹³C NMR δ 14.08, 14.10, 22.5, 22.6, 25.8, 28.2, 28.9, 29.2, 31.6, 39.4, 67.9, 68.0, 72.5, 80.0, 84.5, 98.5, 113.6, 114.7, 128.0, 128.4, 128.5, 158.3, 159.0; MS: m/z = 568 (M⁺), 43, 120 (100 %); HRMS: calcd. for C₂₉H₄₈B₁₀O₄: 568.4556; found: 568.4573. Anal. calcd. for C₂₉H₄₈B₁₀O₄: C, 61.24; H, 8.51. Found: C, 61.38; H, 8.52.

trans-5-(4-Heptyloxyphenyl)-2-[12-(4-pentyloxyphenyl)-p-carboran-1-yl)[1,3]-

dioxane (2[7]). Yield 56%, needles (*n*-hexane): mp 146 °C; ¹H NMR δ 0.88 (t, J = 6.5 Hz, 3H), 0.91 (t, J = 6.9 Hz, 3H), 1.20-1.50 (m, 12H), 1.50-3.75 (brm, 10H), 1.65-1.82 (m, 4H), 3.05 (tt, 4.8, 11.2 Hz, 1H), 3.64 (t, J = 11.0 Hz, 2H), 3.87 (t, J = 7.2 Hz, 2H), 3.90 (t, J = 7.4 Hz, 2H), 4.11 (dd, J = 4.3 Hz, 11.0 Hz, 2H), 4.34 (s, 1H), 6.65 (d, J = 8.9 Hz, 2H), 6.81 (d, J = 8.7 Hz, 2H), 7.00 (d, J = 8.7 Hz, 2H), 7.10 (d, J = 8.9 Hz, 2H); ¹³C NMR δ 159.0, 158.4, 128.6, 128.4, 128.1, 114.7, 113.6, 98.6, 84.6, 80.0, 72.5, 68.0, 67.9, 39.5, 31.8, 29.3, 29.1, 28.9, 28.2, 26.1, 22.7, 22.5, 14.2, 14.1; MS: m/z = 582 (M⁺), 120, 218 (100 %); HRMS: calcd for C₃₀H₅₀O₄: 582.4713; found 582.4718. Anal. Calcd. for C₃₀H₅₀B₁₀O₄: C, 61.82; H, 8.65. Found: C, 61.98; H, 8.66.

trans-5-(4-Octyloxyphenyl)-2-[12-(4-pentyloxyphenyl)-*p*-carboran-1-yl)[1,3]-dioxane (2[8]). Yield 42%, needles (*n*-hexane): mp 124-125 °C; ¹H NMR δ 0.88 (t, J = 7.0 Hz, 3H), 0.91 (t, J = 7.0 Hz, 3H), 1.25-1.45 (m, 14H), 1.50-3.75 (brm, 10H), 1.73 (quint., J = 6.9 Hz, 2H), 1.75 (quint., J = 6.5 Hz, 2H), 3.05 (tt, J = 4.5, 11.4 Hz, 1H), 3.64 (t, J = 11.8 Hz, 2H), 3.87 (t, J = 6.6 Hz, 2H), 3.90 (t, J = 6.6 Hz, 2H), 4.11 (dd, J = 4.2 Hz, 11.6 Hz, 2H), 4.34 (s, 1H), 6.66 (d, J = 8.9 Hz, 2H), 6.82 (d, J = 8.6 Hz, 2H), 7.00 (d, J = 8.6 Hz, 2H), 7.10 (d, J = 8.9 Hz, 2H); MS: m/z = 597 (M⁺), 43, 120 (100 %); HRMS: calcd for C₃₁H₅₂B₁₀O₄: 596.4869; found 596.4906. Anal. Calcd. for C₃₁H₅₂B₁₀O₄: C, 62.38; H, 8.78. Found: C, 62.56; H, 8.76.

trans-5-(4-Nonyloxyphenyl)-2-[12-(4-pentyloxyphenyl)-*p*-carboran-1-yl)[1,3]dioxane (2[9]). Yield 49%, needles (*n*-hexane); mp 124-126 °C; ¹H NMR δ 0.88 (t, *J* = 7.0 Hz, 3H), 0.91 (t, *J* = 7.0 Hz, 3H), 1.25-1.45 (m, 16H), 1.50-3.75 (brm, 10H), 1.65-1.82 (m, 4H), 3.05 (tt, *J* = 4.6, 11.3 Hz, 1H), 3.64 (t, *J* = 11.7 Hz, 2H), 3.87 (t, *J* = 6.6 Hz, 2H), 3.90 (t, *J* = 6.5 Hz, 2H), 4.11 (dd, *J* = 5.0 Hz, 11.7 Hz, 2H), 4.34 (s, 1H), 6.66 (d, *J* = 8.9 Hz, 2H), 6.82 (d, *J* = 8.6 Hz, 2H), 7.00 (d, *J* = 8.6 Hz, 2H), 7.10 (d, *J* = 8.6 Hz, 2H); MS: *m*/*z* = 611 (M⁺), 43, 120, 246 (100 %). Anal. Calcd. for C₃₂H₅₄B₁₀O₄: C, 62.92; H, 8.91. Found: C, 62.93; H, 8.92.

trans-5-(4-Decyloxyphenyl)-2-[12-(4-pentyloxyphenyl)-*p*-carboran-1-yl)[1,3]-dioxane (2[10]). Yield 45%, needles (*n*-hexane): mp 125-126 °C; ¹H NMR δ 0.88 (t, J = 7.0 Hz, 3H), 0.91 (t, J = 7.0 Hz, 3H), 1.25-1.45 (m, 18H), 1.50-3.75 (brm, 10H), 1.65-1.82 (m, 4H), 3.05 (tt, J = 4.7, 11.5 Hz, 1H), 3.64 (t, J = 11.6 Hz, 2H), 3.87 (t, J = 6.5 Hz, 2H), 3.90 (t, J = 6.5 Hz, 2H), 4.12 (dd, J = 4.7 Hz, 12.0 Hz, 2H), 4.34 (s, 1H), 6.66 (d, J = 8.9 Hz, 2H), 6.82 (d, J = 8.6 Hz, 2H), 6.99 (d, J = 8.6 Hz, 2H), 7.10 (d, J = 9.2 Hz, 2H); MS: m/z = 625 (M⁺), 43, 69, 120 (100

%); HRMS: calcd for C₃₃H₅₆B₁₀O₄: 624.5182; found 624.5218. Anal. Calcd. for C₃₃H₅₆B₁₀O₄: C, 63.43; H, 9.03. Found: C, 63.62; H, 9.06.

trans-5-(4-pentylphenyl)-2-[12-(4-pentyloxyphenyl)-p-carboran-1-yl)[1,3]dioxane

(3[5]). Yield 51%, needles (*n*-hexane): mp 144 °C; ¹H NMR δ 0.88 (t, *J* = 6.8 Hz, 3H), 0.91 (t, *J* = 7.0 Hz, 3H), 1.29-1.42 (m, 8H), 1.50-3.75 (brm, 10H), 1.57 (quint., *J* = 7.7 Hz, 2H), 1.73 (quint., *J* = 6.8 Hz, 2H), 2.55 (t, *J* = 7.7 Hz, 2H), 3.08 (tt, 4.7, 11.5 Hz, 1H), 3.67 (t, *J* = 11.6 Hz, 2H), 3.87 (t, *J* = 6.5 Hz, 2H), 4.14 (dd, *J* = 4.6 Hz, 11.9 Hz, 2H), 4.35 (s, 1H), 6.66 (d, *J* = 8.9 Hz, 2H), 7.00 (d, *J* = 8.1 Hz, 2H), 7.10 (d, *J* = 8.9 Hz, 2H), 7.11 (d, *J* = 7.8 Hz, 2H); ¹³C NMR δ 14.1, 22.5, 22.6, 28.2, 28.9, 31.1, 31.5, 35.5, 39.9, 67.9, 72.3, 80.0, 84.6, 98.5, 113.6, 127.3, 128.0, 128.5, 128.6, 133.7, 142.1, 158.9; MS: *m*/*z* = 538 (M⁺), 117, 174 (100 %); HRMS: calcd. for C₂₈H₄₆B₁₀O₃: 538.4450; found: 538.4473. Anal. Calcd. for C₂₈H₄₆B₁₀O₃: C, 62.42; H, 8.61. Found: C, 62.47; H, 8.40.

trans-5-(4-Hexylphenyl)-2-[12-(4-pentyloxyphenyl)-*p*-carboran-1-yl)[1,3]dioxane (3[6]). Yield 62%, needles (*n*-hexane): mp 148 °C; ¹H NMR δ 0.87 (t, J = 6.5 Hz, 3H), 0.91 (t, J = 6.9 Hz, 3H), 1.20-1.45 (m, 10H), 1.50-3.75 (brm, 10H), 1.47-1.62 (m, 2H), 1.73 (quint., J =

6.9 Hz, 2H), 2.55 (t, J = 7.7 Hz, 2H), 3.08 (tt, 4.6, 11.3 Hz, 1H), 3.67 (t, J = 11.6 Hz, 2H), 3.87 (t, J = 6.5 Hz, 2H), 4.14 (dd, J = 4.5 Hz, 12.0 Hz, 2H), 4.35 (s, 1H), 6.66 (d, J = 8.9 Hz, 2H), 7.00 (d, J = 8.1 Hz, 2H), 7.10 (d, J = 9.2 Hz, 2H), 7.11 (d, J = 8.1 Hz, 2H); ¹³C NMR δ 14.1, 14.2, 22.5, 22.6, 28.2, 28.9, 29.0, 31.4, 31.7, 35.6, 39.9, 67.9, 72.3, 80.0, 84.5, 98.5, 113.6, 127.2, 128.0, 128.5, 128.6, 133.7, 142.1, 159.0; MS: m/z = 552 (M⁺), 43, 117, 188 (100 %); HRMS: calcd. for C₂₉H₄₈B₁₀O₃: 552.4607; found: 552.4612. Anal. Calcd. for C₂₉H₄₈B₁₀O₃: C, 63.01; H, 8.75. Found: C, 62.81; H, 8.56.

trans-5-(4-Heptylphenyl)-2-[12-(4-pentyloxyphenyl)-*p*-carboran-1-yl)[1,3]dioxane (3[7]). Yield 52%, needles (*n*-hexane): mp 155 °C; ¹H NMR δ 0.87 (t, *J* = 6.8 Hz, 3H), 0.91 (t, *J* = 7.2 Hz, 3H), 1.20-1.45 (m, 12H), 1.50-3.75 (brm, 10H), 1.47-1.62 (m, 2H), 1.73 (quint., *J* = 6.6 Hz, 2H), 2.55 (t, *J* = 7.7 Hz, 2H), 3.08 (tt, 4.6, 11.6 Hz, 1H), 3.67 (t, *J* = 11.6 Hz, 2H), 3.87 (t, *J* = 6.6 Hz, 2H), 4.14 (dd, *J* = 4.6 Hz, 11.9 Hz, 2H), 4.35 (s, 1H), 6.66 (d, *J* = 8.9 Hz, 2H), 7.00 (d, *J* = 8.4 Hz, 2H), 7.10 (d, *J* = 8.9 Hz, 2H), 7.11 (d, *J* = 8.1 Hz, 2H); ¹³C NMR δ 14.1, 14.2, 22.5, 22.7, 28.2, 28.9, 29.2, 29.3, 31.5, 31.8, 35.6, 39.9, 67.9, 72.3, 80.0, 84.5, 98.5, 113.6, 127.2, 128.0, 128.5, 128.7, 133.7, 142.1, 159.0; MS: *m*/*z* = 566 (M⁺), 43, 117, 202 (100 %);

HRMS: calcd. for C₃₀H₅₀B₁₀O₃: 566.4763; found: 566.4746. Anal. Calcd. for C₃₀H₅₀B₁₀O₃: C, 63.57; H, 8.89. Found: C, 63.59; H, 8.72.

12-(4-Pentyloxyphenyl)-*p*-carborane-1-carbaldehyde (4). To a stirred solution of 1-(4pentyloxyphenyl)-*p*-carborane⁸ (**13**, 1.00 g, 3.27 mmol) in anhydrous Et₂O (10 mL) was added dropwise a 1.6 M solution of n-BuLi (2.51 mL, 3.92 mmol) at 0 °C under argon atmosphere and the reaction mixture was stirred at room temperature for 30 min. Then HCO₂Et (0.32 mL, 3.92 mmol) was added at -78 °C and the reaction mixture was stirred at room temperature for 24 hr. The mixture was poured into water and the whole was extracted with AcOEt. The organic layer was washed with brine, dried (MgSO₄), and concentrated. The crude product was purified by silica gel column chromatography (hexane/CH₂Cl₂, 15:1) to give 0.802 g (74% yield) of aldehyde **4** as colorless powder (*n*-hexane): mp 59 °C; ¹H NMR δ 0.91 (t, *J* = 7.1 Hz, 3H), 1.29-1.45 (m, 4H), 1.50-3.75 (brm, 10H), 1.74 (quint., J = 6.9 Hz, 2H), 3.88 (t, *J* = 6.5 Hz, 2H), 6.67 (d, *J* = 9.1 Hz, 2H), 7.11 (d, *J* = 8.9 Hz, 2H), 8.88 (s, 1H). Anal. Calcd. for C₁₄H₂₆B₁₀O₂: C, 50.27; H, 7.84. Found: C, 50.46; H, 7.77.

2-Alkyl-1,3-propanediols (5[n]), 2-(4-Alkyloxyphenyl)-1,3-propanediols (6[n]), and 2-(4-alkylphenyl)-1,3-propanediols (7[n]). General procedure. To a solution of corresponding diethyl alkylmalonate (8[n]) or diethyl arylmalonate (9[n] or 10[n]) in dry THF was added LiAlH₄ (4.0 equiv.) in small potion at 0 °C and the reaction mixture was stirred at ambient temperature for 12-24 hr under argon. Then, the reaction mixture was poured into ice water and added 10 % HCl. The whole was extracted with Et_2O and the organic layer was washed with brine, dried (MgSO₄) and concentrated. The crude product **5**[n] was purified by silica gel column chromatography (hexane/AcOEt, 1:1) to give the corresponding 2-alkyl-1,3-propanediol as a colorless oil. The crude 2-aryl-1,3-propanediols were recrystallized from *n*-hexane to give pure colorless products.

2-Butyl-1,3-propanediol (5[4]).^{9,10} Yield 73%, oil: ¹H NMR δ 0.90 (t, J = 6.9 Hz, 3 H), 1.20-1.40 (m, 6 H), 1.70-1.85 (m, 1 H), 2.34 (brs, 2 H), 3.66 (dd, J = 7.6, 10.5 Hz, 2 H), 3.83 (dd, J = 3.8, 10.5 Hz, 2 H); MS: m/z = 132 (M⁺), 84 (100); HRMS: calcd. for C₇H₁₆O₂: 132.1150; found: 132.1126.

2-Pentyl-1,3-propanediol (5[5]).^{11,12} Yield 54%, oil (lit.¹¹ bp 100-106 °C/0.2 mm Hg): ¹H NMR δ 0.89 (t, J = 6.8 Hz, 3H), 1.16-1.40 (m, 8H), 1.71-1.84 (m, 1H), 2.37 (brs, 2H), 3.66 (dd, J = 7.7, 10.5 Hz, 2H), 3.82 (dd, J = 3.8, 10.5 Hz, 2H); ¹³C NMR δ 14.13, 22.62, 26.95,

27.73, 32.12, 42.03, 66.8; MS: $m/z = 147 \text{ (M}^+\text{)}$, 55 (100); HRMS: calcd. for C₈H₁₈O₂: 146.1307; found: 146.1307.

2-Hexyl-1,3-propanediol (5[6]).^{11,13} Yield 44%; oil (lit.¹¹ mp 30-32 °C); ¹H NMR δ 0.88 (t, J = 6.6 Hz, 3H), 1.20-1.40 (m, 10H), 1.70-1.85 (m, 1H), 2.15 (t, J = 5.0 Hz, 2H), 3.66 (ddd, J = 4.6, 7.4, 10.5 Hz, 2H), 3.82 (ddd, J = 4.1, 5.3, 10.2 Hz, 2 H); ¹³C NMR δ 14.2, 22.7, 27.2, 27.8, 29.6, 31.8, 42.0, 66.8.

2-Heptyl-1,3-propanediol (5[7]).¹⁰ Yield 44%; oil (lit.¹⁰ mp 32-32.1 °C); ¹H NMR δ 0.88 (t, J = 6.8 Hz, 3H), 1.14-1.40 (m, 12H), 1.65-1.85 (m, 1H), 2.32 (brs, 2H), 3.65 (dd, J = 7.6, 10.5 Hz, 2H), 3.82 (dd, J = 3.8, 10.5 Hz, 2H); ¹³C NMR δ 14.2, 22.7, 27.3, 27.8, 29.3, 29.9, 31.9, 42.0, 66.8; MS: $m/z = 174(M^+)$, 55(100); HRMS: calcd. for C₁₀H₂₂O₂: 174.1620; found: 174.1593. Anal. Calcd. for C₁₀H₂₂O₂: C, 68.92; H, 12.72. Found: C, 68.80; H, 12.63.

2-Octyl-1,3-propanediol (5[8]).¹³ Yield 68%; leaflets; mp 40-41 °C; ¹H NMR δ 0.88 (t, J = 6.6 Hz, 3H), 1.20-1.35 (m, 14H), 1.70-1.85 (m, 1H), 2.22 (brs, 2H), 3.66 (dd, J = 7.6, 10.5 Hz, 2H), 3.83 (dd, J = 3.5, 10.5 Hz, 2H); ¹³C NMR δ 14.2, 22.7, 27.3, 27.8, 29.4, 29.6, 30.0, 31.9, 42.0, 66.8; MS: m/z = 188 (M⁺), 41, 55 (100 %); HRMS: calcd. for C₁₁H₂₄O₂: 188.1776; found: 188.1806. Anal. Calcd. for C₁₁H₂₄O₂: C, 70.16; H, 12.85. Found: C, 70.23; H, 13.07.

2-Nonyl-1,3-propanediol (5[9]). Yield 63%; leaflets: mp 44-45 °C; ¹H NMR δ 0.88 (t, J = 6.5 Hz, 3H), 1.20-1.40 (m, 16H), 1.70-1.85 (m, 1H), 2.22 (brs, 2H), 3.66 (dd, J = 7.6, 10.5 Hz, 2H), 3.83 (dd, J = 3.8, 10.5 Hz, 2H); MS: m/z = 203 (M⁺), 43 (100 %); HRMS: calcd. for C₁₂H₂₆O₂: 202.1933; found: 202.1915. Anal. calcd. for C₁₂H₂₆O₂: C, 71.23; H, 12.95. Found: C, 71.44; H, 13.23.

2-Decyl-1,3-propanediol (5[10]).¹⁴ Yield 66%; needles: mp 57 °C (lit.¹⁴ mp 60 °C); ¹H NMR δ 0.88 (t, J = 7.0 Hz, 3H), 1.20-1.30 (m, 18H), 1.70-1.85 (m, 1H), 2.24 (brs, 2H), 3.66 (dd, J = 7.8, 10.5 Hz, 2H), 3.82 (dd, J = 3.8, 10.5 Hz, 2H); MS: m/z = 216 (M⁺), 32, 43, 57 (100 %); HRMS: calcd. for C₁₃H₂₈O₂: 216.2089; found: 216.2108. Anal. calcd. for C₁₃H₂₈O₂: C, 72.17; H, 13.04. Found: C, 72.26; H, 13.33.

2-(4-Methoxyphenyl)-1,3-propanediol (6[1]).^{15,16} Yield 67%: mp 83-85 °C (lit.¹⁶ mp 83-85 °C); ¹H NMR δ 2.45 (br s, 2H), 3.07 (tt, J = 5.7 Hz, 7.4 Hz, 1H), 3.80 (s, 3H), 3.91 (dd, J = 5.7, 10.8 Hz, 2H), 3.98 (dd, J = 7.4, 10.9 Hz, 2H), 6.88 (d, J = 8.9 Hz, 2H), 7.16 (d, J = 8.9 Hz, 2H); ¹³C NMR δ 49.0, 55.3, 66.1, 114.3, 129.0, 131.1, 158.8.

2-(4-Ethoxyphenyl)-1,3-propanediol (6[2]).¹⁷ Yield 32% for 2 steps from *p*-ethoxyiodobenzene **11[2]**): mp 75-76 °C; ¹H NMR δ 1.41 (t, *J* = 7.0 Hz, 3H), 1.93 (br s, 2H), 3.06 (tt, *J* = 5.8 Hz, 7.4 Hz, 1H), 3.87-4.01 (m, 4H), 4.02 (q, *J* =7.0 Hz, 2H), 6.87 (d, *J* = 8.7 Hz, 2H), 7.15 (d, *J* = 8.7 Hz, 2H); ¹³C NMR δ 14.8, 48.9, 63.4, 66.1, 114.8, 128.9, 131.0, 158.0; MS: m/z = 196 (M⁺), 165 (100 %). Anal. Calcd for C₁₁H₁₆O₃: C, 67.32; H, 8.22. Found: C, 67.22; H, 8.09.

2-(4-Propoxyphenyl)-1,3-propanediol (6[3]). Yield 30% for 2 steps from *p*-propoxyiodobenzene **11[3]**: mp 68-69 °C; ¹H NMR δ 1.03 (t, *J* = 7.4 Hz, 3H), 1.80 (sext., *J* = 7.1 Hz, 2H), 1.89 (t, *J* = 5.6 Hz, 2H), 3.06 (tt, *J* = 5.9 Hz, 7.4 Hz, 1H), 3.85-4.02 (m, 4H), 3.90 (t, *J* = 6.5 Hz, 2H), 6.87 (d, *J* = 8.7 Hz, 2H), 7.15 (d, *J* = 8.6 Hz, 2H); ¹³C NMR δ 10.5, 22.5, 48.8, 66.0, 69.5, 114.7, 128.9, 131.0, 158.2; MS: *m*/*z* = 210 (M⁺), 179 (100 %). Anal. calcd for C₁₂H₁₈O₃: C, 68.54; H, 8.63. Found: C, 68.43; H, 8.86.

2-(4-Butoxyphenyl)-1,3-propanediol (6[4]).¹³ Yield 51%; rods: mp 71-72 °C (lit.¹³ mp 70-72 °C); ¹H NMR δ 0.97 (t, J = 7.4 Hz, 3H), 1.49 (q., J = 7.5 Hz, 2H), 1.76 (quint., J = 7.0 Hz, 2H), 2.00 (br s, 2H), 3.05 (tt, J = 5.9 Hz, 7.3 Hz, 1H), 3.87-4.01 (m, 4H), 3.94 (t, J = 6.5 Hz, 2H), 6.87 (d, J = 8.9 Hz, 2H), 7.14 (d, J = 8.6 Hz, 2H); MS: m/z = 224 (M⁺), 193 (100); HRMS: calcd for C₁₃H₂₀O₃: 224.1412; found 224.1413.

2-(4-Pentyloxyphenyl)-1,3-propanediol (6[5]). Yield 69%; leaflets: mp 59 °C; ¹H NMR δ 0.93 (t, J = 7.2 Hz, 3H), 1.30-1.49 (m, 4H), 1.77 (quint., J = 7.0 Hz, 2H), 2.53 (br s, 2H), 3.02 (tt, J = 5.7 Hz, 7.6 Hz, 1H), 3.80-4.00 (m, 4H),3.92 (t, J = 6.5 Hz, 2H), 6.85 (d, J = 8.9 Hz, 2H), 7.11 (d, J = 8.6 Hz, 2H); ¹³C NMR δ 14.1, 22.5, 28.2, 29.0, 48.9, 66.1, 68.0, 114.7, 128.8, 130.8, 158.1; MS: m/z = 238 (M⁺), 43 (100 %); HRMS: calcd for C₁₄H₂₂O₃: 238.1569; found 238.1587. Anal. Calcd for C₁₄H₂₂O₃: C, 70.56; H, 9.30. Found: C, 70.35; H, 9.46.

2-(4-Hexyloxyphenyl)-1,3-propanediol (6[6]). Yield 73%; leaflets: mp 60 °C; ¹H NMR (270 MHz, CDCl₃) δ 0.90 (t, J = 6.9 Hz, 3H), 1.25-1.58 (m, 6H), 1.77 (quint., J = 7.0 Hz, 2H), 1.94 (br s, 2H), 3.06 (tt, J = 5.7 Hz, 7.6 Hz, 1H), 3.85-4.01 (m, 4H),3.93 (t, J = 6.6 Hz, 2H), 6.87 (d, J = 8.9 Hz, 2H), 7.14 (d, J = 8.9 Hz, 2H); ¹³C NMR δ 14.1, 22.6, 25.7, 29.3, 31.6, 48.8, 66.0, 68.0, 114.6, 128.8, 130.9, 158.0; MS: m/z = 252 (M⁺), 221 (100 %); HRMS: calcd for C₁₅H₂₄O₃: 252.1725; found 252.1716. Anal. Calcd for C₁₅H₂₄O₃: C, 71.39; H, 9.59. Found: C, 71.32; H, 9.71.

2-(4-Heptyloxyphenyl)-1,3-propanediol (6[7]). Yield 71%; prisms: mp 58-60 °C; ¹H NMR δ 0.89 (t, J = 6.5 Hz, 3H), 1.25-1.50 (m, 8H), 1.77 (quint., J = 6.9 Hz, 2H), 1.97 (br s, 2H), 3.06 (tt, J = 5.7 Hz, 7.6 Hz, 1H), 3.85-4.01 (m, 4H),3.93 (t, J = 6.5 Hz, 2H), 6.86 (d, J = 8.9 Hz, 2H), 7.14 (d, J = 8.9 Hz, 2H); ¹³C NMR δ 14.1, 22.6, 26.0, 29.1, 29.3, 31.8, 48.9, 66.0, 68.0, 114.7, 128.8, 130.9, 158.1; MS: m/z = 266 (M⁺), 235 (100 %); HRMS: calcd for C₁₆H₂₆O₃: 266.1882; found 266.1866. Anal. Calcd for C₁₆H₂₆O₃: C, 72.14; H, 9.84. Found: C, 72.15; H, 10.01.

2-(4-Octyloxyphenyl)-1,3-propanediol (6[8]). Yield 44%; cubes: mp 61-62 °C; ¹H NMR δ 0.89 (t, J = 6.8 Hz, 3H), 1.25-1.45 (m, 10H), 1.77 (quint., J = 7.0 Hz, 2H), 1.94 (br s, 2H), 3.06 (tt, J = 5.7 Hz, 7.3 Hz, 1H), 3.87-4.00 (m, 6H), 6.87 (d, J = 8.9 Hz, 2H), 7.14 (d, J = 8.6 Hz, 2H); ¹³C NMR δ 14.0, 22.6, 26.0, 29.18, 29.24, 29.3, 31.8, 48.9, 66.1, 68.0, 114.8, 128.9, 130.9, 158.3; MS: m/z = 280 (M⁺), 249 (100 %); Anal. Calcd for C₁₇H₂₈O₃: C, 72.82; H, 10.06. Found: C, 72.95; H, 10.19.

2-(4-Nonyloxyphenyl)-1,3-propanediol (6[9]). Yield 40%; cubes: mp 64-65 °C; ¹H NMR δ 0.88 (t, J = 6.6 Hz, 3H), 1.20-1.50 (m, 12H), 1.77 (quint., J = 7.0 Hz, 2H), 1.99 (br s, 2H), 3.06 (tt, J = 5.9 Hz, 7.4 Hz, 1H), 3.82-4.00 (m, 6H), 6.87 (d, J = 8.6 Hz, 2H), 7.14 (d, J = 8.9 Hz, 2H); ¹³C NMR δ 14.1, 22.6, 26.0, 29.2, 29.3, 29.4, 29.5, 31.9, 49.0, 66.2, 68.1, 114.9, 129.0, 130.9, 158.4; MS: m/z = 294 (M⁺), 263 (100 %). Anal. Calcd for C₁₈H₃₀O₃: C, 73.43; H, 10.27. Found: C, 73.73; H, 10.40.

2-(4-Decyloxyphenyl)-1,3-propanediol (6[10]). Yield 50%; cubes: mp 69-70 °C; ¹H NMR δ 0.88 (t, J = 6.6 Hz, 3H), 1.25-1.50 (m, 14H), 1.77 (quint., J = 6.9 Hz, 2H), 1.97 (br s, 2H), 3.06 (tt, J = 5.9 Hz, 7.3 Hz, 1H), 3.82-4.00 (m, 6H), 6.87 (d, J = 8.9 Hz, 2H), 7.14 (d, J = 8.9 Hz, 2H); ¹³C NMR δ 14.1, 22.6, 26.0, 29.2, 29.3, 29.4, 29.52, 29.53, 31.8, 48.8, 66.1, 68.0, 114.7, 128.9, 130.9, 158.2. Anal. Calcd for C₁₉H₃₂O₃: C, 73.98; H, 10.46. Found: C, 73.88; H, 10.54.

2-(4-Pentylphenyl)-1,3-propanediol (7[5]).¹⁸ Yield 62%; leaflets (*n*-hexane); mp 71 °C (lit.¹⁸ mp 71.1-73.5 °C) ¹H NMR δ 0.89 (t, J = 6.8 Hz, 3H), 1.26-1.34 (m, 4H), 1.60 (quint., J = 7.5 Hz, 2H), 1.96 (t, J = 5.5 Hz, 2H), 2.57 (t, J = 7.8 Hz, 2H), 3.08 (tt, J = 5.7 Hz, 7.6 Hz, 1H), 3.88-4.04 (m, 4H), 7.14 (s, 4H); MS: m/z = 222 (M⁺), 174 (100 %); ¹³C NMR δ 14.0, 22.5, 31.1,

31.5, 35.5, 49.5, 66.1, 127.9, 128.8, 136.3, 142.0; HRMS: calcd for C₁₄H₂₂O₂: 222.1620; found 222.1639. Anal. Calcd for C₁₄H₂₂O₂: C, 75.63; H, 9.97. Found: C, 75.45; H, 10.22.

2-(4-Hexylphenyl)-1,3-propanediol (7[6]).¹³ Yield 56%; prisms: mp 68 °C (lit.¹³ mp 72-74 °C); ¹H NMR δ 0.88 (t, J = 6.8 Hz, 3H), 1.20-1.30 (m, 6H), 1.55-1.65 (m, 2H), 1.94 (t, J = 5.6 Hz, 2H), 2.58 (t, J = 7.8 Hz, 2H), 3.08 (tt, J = 5.7 Hz, 7.6 Hz, 1H), 3.88-4.04 (m, 4H), 7.14 (s, 4H); ¹³C NMR δ 14.2, 22.7, 29.1, 31.5, 31.7, 35.6, 49.3, 65.9, 127.7, 128.6, 136.2, 141.7; MS: m/z = 236 (M⁺), 188 (100 %); HRMS: calcd for C₁₅H₂₄O₂: 236.1776; found 236.1769. Anal. Calcd for C₁₅H₂₄O₂ : C, 76.23; H, 10.24. Found: C, 76.04; H, 10.44.

2-(4-Heptylphenyl)-1,3-propanediol (7[7]). Yield 72%; prisms: mp 69-70 °C; ¹H NMR δ 0.88 (t, J = 6.8 Hz, 3H), 1.25-1.35 (m, 8H), 1.59 (quint., J = 7.6 Hz, 2H), 1.93 (t, J = 5.4 Hz, 2H), 2.57 (t, J = 7.7 Hz, 2H), 3.09 (tt, J = 5.7 Hz, 7.6 Hz, 1H), 3.88-4.04 (m, 4H), 7.14 (s, 4H); ¹³C NMR δ 14.2, 22.7, 29.2, 29.4, 31.5, 31.9, 35.6, 49.3, 66.0, 127.7, 128.7, 136.2, 141.7; MS: m/z = 250 (M⁺), 202 (100 %); HRMS: calcd for C₁₆H₂₆O₂: 250.1933; found 250.1940. Anal. Calcd for C₁₆H₂₆O₂: C, 76.75; H, 10.47. Found: C, 76.60; H, 10.68.

Diethyl Arylmalonates 9[n] and 10[n]. General procedure. A double neck flask was charged sequentially with CuI (20 mol %), 2-phenylphenol (40 mol %) and Cs_2CO_3 (1.5 equiv.). The flask was evacuated and backfilled with argon (3 times). The aryl iodide was added followed by diethyl malonate (2.0 equiv) and anhydrous 1,4-dioxane. The reaction mixture was refluxed for 17 hr. Then the reaction mixture was cooled and filtrated through Celite. The filtrate was washed with saturate aqueous NH₄Cl followed by brine, dried over MgSO₄ and concentrated. The crude product purified by silica gel flash column chromatography (*n*-hexane/AcOEt, 15:1) to give diethyl arylmalonate as a colorless oil.

Diethyl (4-Methoxyphenyl)malonate (9[1]).¹⁹ Yield 70%; ¹H NMR δ 1.26 (t, J = 7.0 Hz, 6H), 3.80 (s, 1H), 4.12-4.29 (m, 4H), 4.55 (s, 1H), 6.89 (d, J = 8.9 Hz, 2 H), 7.33 (d, J = 8.9 Hz, 2H); ¹³C NMR δ 14.0, 55.2, 57.1, 61.7, 114.0, 124.9, 130.4, 159.5, 168.4.

Diethyl (4-Ethoxyphenyl)malonate (9[2]).^{17,19} Isolation of **9[2]** from 2-phenylphenol was not achieved with any solvent system. Therefore the mixture was used in the reduction of malonate **9[2]** with LiAlH₄ without further purification.

Diethyl (4-Propoxyphenyl)malonate (9[3]).¹⁹ Isolation of **9[3]** from 2-phenylphenol was not achieved with any solvent system. Therefore the mixture was used in the reduction of malonate **9[3]** with LiAlH₄ without further purification.

Diethyl (4-Butoxyphenyl)malonate (9[4]).¹⁹ Yield 30%: ¹H NMR δ 0.93 (t, J = 6.9 Hz, 3H), 1.26 (t, J = 7.2 Hz, 6H), 1.33-1.49 (m, 4H), 1.78 (quint., J = 6.8 Hz, 2H), 3.94 (t, J = 6.6 Hz, 2H), 4.12-4.29 (m, 4H), 4.54 (s, 1H), 6.87 (d, J = 8.6 Hz, 2H), 7.30 (d, J = 8.6 Hz, 2H).

Diethyl (4-Pentyloxyphenyl)malonate (9[5]).¹⁹ Yield 38%: ¹H NMR δ 0.93 (t, J = 6.9 Hz, 3H), 1.26 (t, J = 7.2 Hz, 6H), 1.33-1.49 (m, 4H), 1.78 (quint., J = 6.8 Hz, 2H), 3.94 (t, J = 6.6 Hz, 2H), 4.12-4.29 (m, 4H), 4.54 (s, 1H), 6.87 (d, J = 8.6 Hz, 2H), 7.30 (d, J = 8.6 Hz, 2H); ¹³C NMR δ 14.1, 22.5, 28.2, 29.0, 57.2, 61.7, 67.9, 114.4, 124.5, 130.2, 158.9, 168.3; MS: m/z = 322 (M⁺), 179 (100); HRMS: calcd for C₁₈H₂₆O₅: 322.1780; found 322.1796.

Diethyl (4-Hexyloxyphenyl)malonate (9[6]).¹⁹ Yield 56%: ¹H NMR δ 0.90 (t, J = 6.8 Hz, 3H), 1.26 (t, J = 7.2 Hz, 6H), 1.27-1.52 (m, 6H), 1.77 (quint., J = 7.0 Hz, 2H), 3.94 (t, J = 6.6 Hz, 2H), 4.12-4.29 (m, 4H), 4.54 (s, 1H), 6.87 (d, J = 8.6 Hz, 2H), 7.3 (d, J = 8.6 Hz, 2H); ¹³C NMR δ 14.1, 22.7, 25.8, 29.3, 31.6, 57.2, 61.7, 68.0, 114.4, 124.5, 130.2, 158.9, 168.3; MS: m/z = 336 (M⁺), 179 (100); HRMS: calcd for C₁₉H₂₈O₅: 336.1937; found 336.1921.

Diethyl (4-Heptyloxyphenyl)malonate (9[7]).¹⁹ Yield 59%: ¹H NMR δ 0.89 (t, J = 6.8 Hz, 3H), 1.26 (t, J = 7.2 Hz, 6H), 1.24-1.52 (m, 8H), 1.77 (quint., J = 7.0 Hz, 2H), 3.94 (t, J = 6.5 Hz, 2H), 4.12-4.29 (m, 4H), 4.54 (s, 1H), 6.87 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.6 Hz, 2H); ¹³C NMR δ 14.1, 14.2, 22.7, 26.1, 29.1, 29.3, 31.8, 57.2, 61.7, 68.0, 114.4, 124.5, 130.2, 158.9, 168.3; MS: m/z = 350 (M⁺), 179 (100); HRMS: calcd for C₂₀H₃₀O₅: 350.2093; found 350.2071.

Diethyl (4-Octyloxyphenyl)malonate (9[8]).¹⁹ Yield 60%: (lit.¹⁹ mp 26-27 °C); ¹H NMR δ 0.89 (t, J = 6.8 Hz, 3H), 1.26 (t, J = 7.0 Hz, 6H), 1.23-1.52 (m, 10H), 1.77 (quint., J = 6.9 Hz, 2H), 3.94 (t, J = 6.6 Hz, 2H), 4.15-4.29 (m, 4H), 4.54 (s, 1H), 6.87 (d, J = 8.9 Hz, 2H), 7.3 (d, J = 8.9 Hz, 2H); MS: m/z = 364 (M⁺), 179 (100); HRMS: calcd for C₂₁H₃₂O₅: 364.2250; found 364.2241.

Diethyl (4-Nonyloxyphenyl)malonate (9[9]).¹⁹ Yield 67%: ¹H NMR δ 0.88 (t, J = 6.6 Hz, 3H), 1.26 (t, J = 7.2 Hz, 6H), 1.20-1.50 (m, 12H), 1.77 (quint., J = 7.0 Hz, 2H), 3.94 (t, J = 6.6 Hz, 2H), 4.11-4.29 (m, 4H), 4.54 (s, 1H), 6.87 (d, J = 8.6 Hz, 2H), 7.30 (d, J = 8.6 Hz, 2H); ¹³C NMR δ 14.0, 14.1, 22.7, 26.0, 29.2, 29.4, 29.5, 31.9, 57.2, 61.7, 68.0, 114.6, 124.7, 130.3,

159.1, 168.5; MS: m/z = 378 (M⁺), 179 (100); HRMS: calcd for C₂₂H₃₄O₅: 378.2406; found 378.2394.

Diethyl (4-Decyloxyphenyl)malonate (9[10]).¹⁹ Yield 66%, rods (*n*-hexane): mp 38 °C; (lit.¹⁹ mp 38-39 °C); ¹H NMR δ 0.88 (t, J = 6.6 Hz, 3H), 1.26 (t, J = 7.0 Hz, 6H), 1.20-1.50 (m, 14H), 1.77 (quint., J = 6.9 Hz, 2H), 3.94 (t, J = 6.5 Hz, 2H), 4.11-4.29 (m, 4H), 4.54 (s, 1H), 6.87 (d, J = 8.6 Hz, 2H), 7.30 (d, J = 8.9 Hz, 2H); ¹³C NMR δ 14.0, 14.1, 22.7, 26.1, 29.26, 29.31, 29.39, 29.56, 29.58, 31.9, 57.2, 61.7, 68.0, 114.6, 124.7, 130.3, 159.1, 168.5; MS: m/z = 392 (M⁺), 179 (100); HRMS: calcd for C₂₃H₃₆O₅: 392.2563; found 392.2554. Anal. Calcd for C₂₃H₃₆O₅: C, 70.38; H, 9.24. Found: C, 70.50; H, 9.47.

Diethyl (4-Pentylphenyl)malonate (10[5]).¹⁹ Yield 46%: ¹H NMR δ 0.89 (t, *J* = 6.8 Hz, 3H), 1.26 (t, *J* = 7.2 Hz, 6H), 1.22-1.30 (m, 4H), 1.61 (quint., *J* = 7.6 Hz, 2H), 2.59 (t, *J* = 7.7 Hz, 2H), 4.11-4.29 (m, 4H), 4.57 (s, 1H), 7.16 (d, *J* = 8.1 Hz, 2H), 7.30 (d, *J* = 8.1 Hz, 2H); ¹³C NMR δ 14.0, 22.5, 31.0, 31.5, 35.6, 57.6, 61.6, 128.4, 128.9, 129.8, 142.7, 168.1; MS: *m/z* = 306 (M⁺), 233 (100); HRMS: calcd for C₁₈H₂₆O₄: 306.1831; found 306.1825.

Diethyl (4-Hexylphenyl)malonate (10[6]).¹⁹ Yield 36%: ¹H NMR δ 0.88 (t, J = 6.6 Hz, 3H), 1.26 (t, J = 7.2 Hz, 6H), 1.26-1.40 (m, 6H), 1.60 (quint., J = 7.6 Hz, 2H), 2.59 (t, J = 7.7 Hz, 2H), 4.12-4.29 (m, 4H), 4.57 (s, 1H), 7.16 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H); ¹³C NMR δ 13.9, 14.0, 22.5, 28.9, 31.2, 31.6, 35.5, 57.5, 61.5, 128.3, 128.8, 129.8, 142.6, 197.9; MS: m/z = 320 (M⁺), 247 (100); HRMS: calcd for C₁₉H₂₈O₄: 320.1988; found 320.1966.

Diethyl (4-Heptylphenyl)malonate (10[7]). Yield 38%: ¹H NMR δ 0.88 (t, J = 6.8 Hz, 3H), 1.26 (t, J = 7.2 Hz, 6H), 1.23-1.35 (m, 8H), 1.60 (quint., J = 7.8 Hz, 2H), 2.59 (t, J = 7.7 Hz, 2H), 4.12-4.29 (m, 4H), 4.57 (s, 1H), 7.16 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H); ¹³C NMR δ 14.1, 14.2, 22.7, 29.2, 29.4, 31.4, 31.9, 35.7, 57.6, 61.7, 128.5, 128.9, 129.8, 142.8, 168.1; MS: m/z = 334 (M⁺), 262 (100); HRMS: calcd for C₂₀H₃₀O₄: 334.2144; found 334.2157.

8. Archive files for HF/6-31G(d) calculations

1[4] conformer A

^{1\1\}GINC-MONSTER\FOpt\RHF\6-31G(d)\C21H40B1003\PIOTR\19-Jan-2006\0\\#P HF/6-31G* FOPT GEOM(NOANGLE, NODISTANCE) FCHECK\\1-(4-Pentyloxyphenyl))-12-(5-butyldiox[1,3]an-2-yl)-p-carborane C1, high diople\\0,1\B,-1.3 438728076,1.5369720748,-0.9756788801\B,-1.3385317418,1.5107808833,0.80 88764064\B,0.3544845693,1.5422741868,-1.5346191225\B,0.3597738665,1.52 50901984,1.357533908\B,1.4095111305,1.5348144331,-0.0897124037\B,1.123

2171911,0.0264746285,0.7963144078\B,1.1107211837,0.0432661405,-0.98678 36885\B,-0.5714414237,0.0175490247,1.3483318458\B,-1.625953302,0.02488 56186,-0.0958915598\B,-0.5839434151,0.0384246785,-1.5418149409\C,-0.11 0209294,-0.7956498126,-0.0996541587\C,-0.1307704136,-2.3137654166,-0.0 926880876\C,0.8145773993,-3.0683574,-0.7898823072\C,0.7864675013,-4.44 44690186,-0.7767756898\C,-0.1940983094,-5.1254116481,-0.0616793762\O,-0.138251054,-6.4685749236,-0.1099326566\C,-1.0866166522,-7.2436733869, 0.5809735002\C,-0.7585343562,-8.7050736769,0.3325138074\C,-1.730893769 9,-9.6502485697,1.0400991472\C,-1.4102855162,-11.1262568105,0.79701176 93\C,-2.3814630349,-12.0708266261,1.5037505808\C,-1.1415702434,-4.3958 77008,0.6367516894\C,-1.0996845472,-3.0083551704,0.6136195153\C,-0.115 9514587,2.3335329812,-0.0795367821\C,-0.169202302,3.8647408918,-0.0327 956263\0,-0.3531569619,4.3575163578,-1.3091050381\C,-0.4290617525,5.76 13713432,-1.3534134288\C,0.8188105933,6.3919907552,-0.7390905992\C,1.0 265698076,5.7514432854,0.6323796301\0,0.9946850241,4.3479067005,0.5301 883869\C,0.698942297,7.9185065643,-0.6864752544\C,1.9729183407,8.64505 69296,-0.2447978242\C,1.8386334291,10.1678662946,-0.3086208146\C,3.105 8182838,10.8966883265,0.1366097199\H,-2.1640980288,2.1553850617,-1.550 1880084\H,-2.1474169283,2.131340817,1.4027287801\H,0.6673519483,2.1531 167547,-2.4878727011\H,0.6600692237,2.1358002342,2.3178560633\H,2.4158 182639,2.1406134153,-0.0933834056\H,1.9340770067,-0.5997875079,1.37868 87074\H,1.9390348941,-0.5294165544,-1.5944103303\H,-0.8711860181,-0.59 69137205,2.3075298706\H,-2.6337141942,-0.5848780585,-0.1064558963\H,-0 .8946152261,-0.5800770363,-2.495643756\H,1.5859994252,-2.5833506523,-1 .3528556951\H,1.5192468637,-5.014133201,-1.3170966095\H,-1.0463200495, -7.0173873392,1.6428038211\H,-2.0858698622,-7.0096453365,0.2245539564\ H,-0.773931202,-8.8850665382,-0.7384935366\H,0.2572178992,-8.892743616 6,0.6682499613\H,-1.7165531034,-9.4536196807,2.1109590653\H,-2.7467402 744, -9.445931699, 0.7055550967\H, -1.4255076238, -11.3254620037, -0.272104 3305\H,-0.3963740186,-11.3331398632,1.1318355331\H,-2.3639380648,-11.9 189632501,2.5792901533\H,-3.4010548353,-11.9112197663,1.1644677135\H,-2.1283446766,-13.1088834366,1.3125239916\H,-1.9144454508,-4.8802983032 ,1.2005463077\H,-1.8492779101,-2.4761931748,1.1657846706\H,-1.01309814 99,4.1643480305,0.5870282081\H,-0.5377852897,6.0270278893,-2.395431014 \H,-1.3224852669,6.0936586954,-0.8240836353\H,1.6647458166,6.114402143 5,-1.3626138448\H,0.2536158688,6.0838137006,1.3262594799\H,1.988348912 7,5.995201633,1.0574855945\H,0.4216552923,8.2746472596,-1.6768280638\H ,-0.1217679392,8.1955230371,-0.0261309464\H,2.2345667104,8.3580266051, 0.7710198402\H,2.8026906313,8.3306416065,-0.8749757766\H,1.5898580005, 10.4643063785,-1.3252348315\H,1.0036564549,10.4822444378,0.3139464412\ $\texttt{H}, \texttt{2.9802333826}, \texttt{11.9732022765}, \texttt{0.0780138808} \\ \texttt{H}, \texttt{3.3611153284}, \texttt{10.6490330508} \\ \texttt{10.649030508} \\$,1.1630266627\H,3.9528038586,10.6279363341,-0.4881332809\\Version=x86-Linux-G98RevA.9\HF=-1290.0277806\RMSD=7.062e-09\RMSF=3.494e-06\Dipole= -0.4840568,0.7108929,0.3839442\PG=C01 [X(C21H40B10O3)]\\@

1[4] conformer B

1\1\GINC-MONSTER\FOpt\RHF\6-31G(d)\C21H40B1003\PIOTR\27-Dec-2005\0\\#P HF/6-31G* FOPT GEOM(NOANGLE, NODISTANCE) FCHECK\\1-(4-Pentyloxyphenyl))-12-(5-butyldiox[1,3]an-2-yl)-p-carborane C1, low diople 2\\0,1\B,-1. 5111798819,1.1497771758,1.522925881\B,-1.2348737939,2.246632156,0.1422 30868\B,-1.7057561861,-0.508316736,0.8828046402\B,-1.2831451764,1.2753 55434,-1.3544417075\B,-1.5645949494,-0.4305065035,-0.8989497764\B,0.06 85257623,0.1294590235,-1.3005045511\B,-0.1972776774,-0.962054415,0.084 323624\B,0.2659578459,1.7796848965,-0.6570962522\B,0.1248683006,1.7019 895601,1.1241074831\B,-0.1600389437,0.0036156486,1.5830608396\C,0.8356 202815,0.4139331001,0.2263301808\C,2.3377196031,0.2233979196,0.3374251 129\C,3.1907504735,1.3246112578,0.449975029\C,4.5538693035,1.171267747 ,0.5517490685\C,5.123896329,-0.0989644398,0.5451739671\0,6.4641479046,

-0.1472116437,0.6493798699\C,7.1315632963,-1.3850217799,0.6518762384\C ,8.6187381047,-1.1080142257,0.7808623935\C,9.4524230802,-2.3903171983, 0.7947290575\C,10.9533102416,-2.1238315685,0.92436374\C,11.7865082998, -3.4046392809,0.9382578631\C,4.2967079067,-1.2032631903,0.4347601639\C ,2.9217454081,-1.031761308,0.3327842066\C,-2.25243184,0.8662074621,0.0 013332448\C,-3.7550954735,1.1493441318,-0.105254919\O,-4.4094258209,0. 5679889722,0.9622498042\C,-5.7975063065,0.7951525057,0.9489955512\C,-6 .4157666681,0.3013780734,-0.357237375\C,-5.6033990258,0.902343178,-1.5 032489437\0,-4.2292066631,0.6675607172,-1.308665809\C,-7.9084502663,0. 6398698081,-0.4258666287\C,-8.6475384474,0.032268167,-1.6219169871\C,-10.1520122963,0.3091793432,-1.5913594673\C,-10.8924011353,-0.290670386 ,-2.786002006\H,-2.1494080563,1.5143672697,2.4421705613\H,-1.711748066 5,3.3257180073,0.1514804495\H,-2.4633389858,-1.2555175028,1.3803291782 \H,-1.7713429907,1.7226598466,-2.3275122567\H,-2.2293731045,-1.1266338 637, -1.5721919829\H, 0.7160362424, -0.2241317374, -2.2194759509\H, 0.22922 19554,-2.0582575068,0.070165796\H,1.0273415429,2.5196351901,-1.1670937 022\H,0.7919819563,2.3896204999,1.8092998584\H,0.3373880278,-0.4327790 842,2.5582209479\H,2.7889345306,2.3187170291,0.458801201\H,5.199065216 4,2.0255072678,0.6377373479\H,6.7816832884,-1.9920233556,1.482188228\H ,6.9203282667,-1.9207996226,-0.2693217715\H,8.9242458643,-0.4716883033 ,-0.0446412727\H,8.7867167568,-0.5423162744,1.6927123485\H,9.130398300 6,-3.0258672887,1.6181203898\H,9.2677864141,-2.9553153689,-0.117567436 6\H,11.277666004,-1.490275025,0.1019694163\H,11.1404178488,-1.56075026 4,1.8358786454\H,11.5084317385,-4.0446871454,1.7708205983\H,11.6467400 06, -3.9736704073, 0.0234800832\H, 12.8450564287, -3.1831253731, 1.03104794 7\H,4.6943969355,-2.1990787716,0.425856176\H,2.315205034,-1.9107363111 ,0.2491536852\H,-3.9089423202,2.2269144447,-0.0700718191\H,-6.19958296 37,0.2696406918,1.8036151217\H,-5.9926313427,1.8594344462,1.0832008399 \H,-6.2849298152,-0.7770980171,-0.3923652639\H,-5.7833347598,1.9757527 697,-1.5724123192\H,-5.8473459915,0.4577722645,-2.4561416008\H,-8.3816 270735,0.2892366737,0.4893869536\H,-8.035183434,1.7216258451,-0.435051 2289\H,-8.2380073178,0.4204227438,-2.5516199089\H,-8.4802277632,-1.043 0129647,-1.6391927675\H,-10.5718003379,-0.0880637994,-0.6698124768\H,-10.3200112507,1.3837375524,-1.5649414379\H,-11.9558369416,-0.079607818 8,-2.734612983\H,-10.5198537873,0.1144501874,-3.7225519803\H,-10.77057 11325,-1.3694783872,-2.8214507195\\Version=x86-Linux-G98RevA.9\HF=-129 0.0278395\RMSD=5.059e-09\RMSF=3.552e-06\Dipole=-0.7223315,-0.2187068,-0.085939\PG=C01 [X(C21H40B10O3)]\\@

1[4] conformer C (syn)

1\1\GINC-MASTER\FOpt\RHF\6-31G(d)\C21H40B1003\PIOTR\12-Mar-2006\0\\#P HF/6-31G* FOPT GEOM(NOANGLE, NODISTANCE) FCHECK\\1-(4-Pentyloxyphenyl)-12-(5-butyldiox[1,3]an-2-yl)-p-carborane, C syn\\0,1\B,-1.1922237088,1 .5779882698,-0.5745565968\B,-1.1756492613,1.5850882104,1.2112355875\B, 0.5009260436,1.5206172235,-1.1464560194\B,0.5220973276,1.5535554332,1. 7478270118\B,1.5642248134,1.5023979031,0.2909167211\B,1.2286066741,0.0 25682356,1.2074532307\B,1.2100296881,0.0041413989,-0.5788483757\B,-0.4 600898345,0.0726315712,1.7752934694\B,-1.5168226962,0.0950145037,0.336 764458\B,-0.4873895865,0.0472828015,-1.119083472\C,-0.0284448839,-0.77 62075226,0.3340620197\C,-0.0399885665,-2.2943057251,0.3490407948\C,-1. 2190029848,-3.0196920315,0.3633290434\C,-1.2274867779,-4.4089497622,0. 3772526503\C,-0.0319290024,-5.1065150009,0.3772440238\0,0.0781779393,-6.4471258979,0.3901104034\C,-1.0737130021,-7.2536258481,0.4039174369\C ,-0.6228415802,-8.7033341557,0.4153528143\C,-1.7993757666,-9.680595959 5,0.4309746477\C,-1.3573247866,-11.1451566219,0.442572625\C,-2.5324274 178,-12.1217676,0.4581842941\C,1.1637121085,-4.3933267669,0.3629528663 \C,1.1555659498,-3.0179069389,0.3490023347\C,0.0662915744,2.3511695365 ,0.2984414781\C,0.0623541447,3.8838576576,0.3188637563\O,-0.1247661916

,4.3598796631,-0.963119483\C,-0.1620599161,5.7649797228,-1.0386918189\ C,1.1145945981,6.3657591249,-0.452510314\C,1.3214454079,5.7424718986,0 .9262537425\0,1.2493645913,4.3394481324,0.8565116296\C,1.0857697821,7. 8953853032,-0.3698825183\C,1.0552913029,8.6085358455,-1.7250515666\C,1 .133978139,10.1310214188,-1.5950162362\C,1.0980769018,10.8467256019,-2 .9447155662\H,-1.9982248379,2.2110720719,-1.1531338465\H,-1.9632352615 ,2.2422687232,1.7940914736\H,0.8243232442,2.1052942174,-2.1125805462\H ,0.8553357498,2.1713380751,2.6926485864\H,2.5898426166,2.0747040241,0. 2758646695\H,2.0255309648,-0.6018808333,1.8059747676\H,1.9964615666,-0 .6375343292,-1.176445967\H,-0.777658902,-0.5290440626,2.7376246529\H,-2.5594423112,-0.4496376993,0.3501849071\H,-0.8253952508,-0.5775430783, -2.0593818627\H,-2.1645472322,-2.5160918689,0.3636428393\H,-2.17064672 84,-4.919084461,0.387768078\H,-1.6702708428,-7.0312153565,1.284241468\ H,-1.6796046407,-7.0479645163,-0.4740920173\H,-0.0020205769,-8.8786675 973,-0.4584494494\H,0.0073114346,-8.8620221604,1.2856533919\H,-2.42142 21854, -9.4886701473, 1.303806481\H, -2.4307509803, -9.5052845288, -0.43864 4156\H,-0.7369461288,-11.3396909906,-0.4293272087\H,-0.727610343,-11.3 23094473,1.3113217511\H,-3.1534357495,-11.9745124462,1.3372868763\H,-3 .1628374951,-11.9912362759,-0.4168572397\H,-2.187279095,-13.1508492908 ,0.4661451091\H,2.0891432649,-4.9382692842,0.362809962\H,2.0964531049, -2.5038552468,0.337816443\H,-0.7621344748,4.2210109035,0.9454546241\H, -0.2840394018,6.0017007373,-2.0847498777\H,-1.035921538,6.13560122,-0. 501658255\H,1.9440564297,6.0505556809,-1.0802661379\H,0.570561798,6.11 03810214,1.6259680884\H,2.2974419991,5.9770603608,1.3270114218\H,0.228 2668606,8.21066666657,0.2231100499\H,1.9672174697,8.2255253436,0.176538 1316\H,1.884997962,8.256534369,-2.3351188748\H,0.1473825219,8.34877919 21, -2.2644555053\H, 0.3101192279, 10.4828730036, -0.9777104808\H, 2.046731 5011,10.3998748744,-1.0678856671\H,1.1577346326,11.9232326481,-2.81956 11152\H,1.92919703,10.5402015811,-3.5733649965\H,0.1796452415,10.62672 73359,-3.4814900869\\Version=x86-Linux-G98RevA.9\HF=-1290.0278308\RMSD =9.432e-09\RMSF=2.480e-06\Dipole=-0.5303901,0.7046918,0.0505721\PG=C01 [X(C21H40B10O3)]\\@

1[4] conformer C (anti)

 $\label{eq:line-monster} $$ 1\1\GINC-MONSTER\FOpt\RHF\6-31G(d)\C21H40B1003\PIOTR\20-Jan-2006\0\\#P \ and a statement of the statement of the$ HF/6-31G* FOPT GEOM(NOANGLE, NODISTANCE) FCHECK\\1-(4-Pentyloxyphenyl)-12-(5-butyldiox[1,3]an-2-yl)-p-carborane C1\\0,1\B,-1.3485541483,1.5 920553864,-0.8064069107\B,-1.3448028169,1.5926036764,0.9794914137\B,0. 3482875609,1.5260806834,-1.366301707\B,0.3487841142,1.5484346075,1.528 1465928\B,1.401068913,1.4959615783,0.0786033435\B,1.0495784416,0.01809 28167,0.9873050685\B,1.0437581233,0.003119624,-0.7991625537\B,-0.64283 46858,0.0736565587,1.5431712459\B,-1.6889718543,0.1078680061,0.0971499 798\B,-0.6494050844,0.0589170313,-1.351442962\C,-0.2060837605,-0.77269 42681,0.1019767679\C,-0.2273209162,-2.290732724,0.111369139\C,-1.41093 44177,-3.008724801,0.1150047514\C,-1.4282303627,-4.3979386255,0.123844 9539\C,-0.2371068197,-5.1030279278,0.1294609467\0,-0.135502453,-6.4443 36446,0.1382441107\C,-1.2924981041,-7.2436042947,0.1408653196\C,-0.850 8336829, -8.6961599625, 0.1499204877\C, -2.033565282, -9.6660285235, 0.1535 297388\C,-1.6008160316,-11.1333830943,0.1626454224\C,-2.7821106045,-12 .1026148698,0.1662434742\C,0.9630566736,-4.3973365845,0.1259218084\C,0 .9636367188,-3.0218535769,0.1168946525\C,-0.0915181567,2.3541266091,0. 0784568207\C,-0.08610771,3.8867201681,0.1042781161\0,-0.2613872515,4.3 687071069,-1.1773881783\C,-0.2840781625,5.7737079448,-1.2406863169\C,0 .9917411013,6.3645371149,-0.6444713372\C,1.185888328,5.7352199367,0.73 41749121\0,1.0998629672,4.3326626092,0.6516584147\C,0.9304637314,7.895 0893764,-0.6121743177\C,2.2346469879,8.5784374574,-0.1901437919\C,2.15 78936174,10.1042538126,-0.2740930679\C,3.4554074313,10.7901776003,0.15 15068839\H,-2.1463564548,2.232305477,-1.388425298\H,-2.1324329023,2.25

26338555,1.5590578369\H,0.6823576368,2.1122389,-2.3278860907\H,0.67911 17518,2.1606885528,2.4775938736\H,2.4303601889,2.0618101571,0.07301553 33\H,1.838269547,-0.6166038905,1.5892125031\H,1.8305040576,-0.64128827 98,-1.3933960361\H,-0.9711020853,-0.529514512,2.5009674986\H,-2.735040 5516,-0.4302709123,0.1010623349\H,-0.9845493166,-0.5604285585,-2.29637 53424\H,-2.3532832457,-2.4991937132,0.1107058536\H,-2.3746356904,-4.90 21376346,0.1260909002\H,-1.8938467896,-7.0207809515,1.017820737\H,-1.8 908836967, -7.0308056017, -0.7405849166\H, -0.2249764297, -8.8720997271, -0 $.7201603052 \ H, -0.2278425571, -8.8621136733, 1.0240155477 \ H, -2.6605438454$,-9.4734797476,1.0226877181\H,-2.6576704074,-9.4834566968,-0.719834529 5\H,-0.9755222682,-11.3285326227,-0.705598069\H,-0.9783899006,-11.3185 698399,1.03512415\H,-3.4083848643,-11.954764377,1.0415021004\H,-3.4054 826455,-11.9648078429,-0.7127156098\H,-2.4434981205,-13.1338760901,0.1 727074056\H,1.8850212672,-4.9481095599,0.1301289278\H,1.907788377,-2.5 137049246,0.114011606\H,-0.9129431887,4.2267973473,0.7261783602\H,-0.3 908510644,6.029091614,-2.285472413\H,-1.1599619902,6.1470795316,-0.709 4328482\H,1.8215094537,6.0464241669,-1.2703579953\H,0.4316870764,6.106 1914422,1.4291162552\H,2.1595932129,5.9478935293,1.1486955843\H,0.6590 347519,8.2480572245,-1.6052837386\H,0.1261889596,8.2121675627,0.050365 0368\H,2.4932825689,8.2954625079,0.8275804656\H,3.0467972092,8.2240597 954,-0.8220728248\H,1.9124641128,10.3961316407,-1.2928391644\H,1.34048 50986,10.4586877043,0.3502687267\H,3.3704077699,11.8698036495,0.078916 578\H,3.7092857102,10.5469292719,1.1793279261\H,4.2865368754,10.480844 6158,-0.4757527915\\Version=x86-Linux-G98RevA.9\HF=-1290.0278314\RMSD= 4.239e-09\RMSF=2.721e-06\Dipole=-0.5014528,0.7072214,0.0829819\PG=C01 [X(C21H40B10O3)]\\@

1[4] conformer D (syn)

1\1\GINC-MONSTER\FOPt\RHF\6-31G(d)\C21H40B1003\PIOTR\26-Dec-2005\0\\#P HF/6-31G* FOPT GEOM(NOANGLE, NODISTANCE) FCHECK\\1-(4-Pentyloxyphenyl)-12-(5-butyldiox[1,3]an-2-yl)-p-carborane C1, low diople $\0,1\B,-2.16$ 18110219,0.6405207905,-1.244594003\B,-1.0717900276,2.0552574276,-1.244 0264367\B,-1.1680322643,-0.8275122366,-1.4777299876\B,0.5912808653,1.4 709399098,-1.4972261681\B,0.5379139102,-0.3150802916,-1.6318713353\B,1 .021597631,0.4572568505,-0.1143470548\B,-0.0683648863,-0.957912405,-0. 1003140931\B,0.0301514776,1.9182330968,0.1289236848\B,-1.6722571938,1. 4018462194,0.2770960995\B,-1.7349209431,-0.3755196321,0.1419523537\C,-0.3885776608,0.4223885309,0.8840002957\C,-0.1889132693,0.2799861806,2. 3823315824\C,-1.0169660392,0.9264673062,3.3018499262\C,-0.8271369972,0 .7913325261,4.6584260837\C,0.2049531763,-0.0004387398,5.152905838\O,0. 3095786338,-0.069926043,6.4922387571\C,1.3210813515,-0.8459152897,7.08 57928595\C,1.17537929,-0.7213799967,8.591887144\C,2.2302241682,-1.5295 306676,9.3493257116\C,2.0934944168,-1.411824973,10.8685131323\C,3.1471 225526, -2.2190578243, 11.6255612015\C, 1.0380498402, -0.6503183595, 4.2577 741584\C,0.8333861316,-0.5041025747,2.8923730337\C,-0.7470572471,0.671 4347628,-2.2145570156\C,-0.9400088581,0.8534887259,-3.7242197946\O,-1. 9200767249,-0.0104791759,-4.1699415298\C,-2.1716079919,0.1042533315,-5 .5491088818\C,-0.8929417456,-0.1173997091,-6.3542044367\C,0.1813683541 ,0.7962967403,-5.7664457438\0,0.2589493956,0.6306297225,-4.3707637023\ C,-1.1342024393,0.1100403469,-7.8500181399\C,0.048374946,-0.2570901426 ,-8.7515133299\C,-0.2747821366,-0.1135529096,-10.240144135\C,0.9043787 435,-0.4735509509,-11.1430005199\H,-3.2279831607,0.7255008157,-1.73571 82475\H,-1.4255479481,3.0579674907,-1.7551410436\H,-1.5738482677,-1.72 7643823,-2.1140355877\H,1.3424469192,2.0923269883,-2.1567762721\H,1.26 00725799,-0.8754745382,-2.369624842\H,2.0921113023,0.3939817297,0.3728 228656\H,0.2735262494,-1.9704699344,0.3949667813\H,0.4404242635,2.8099 938928,0.7811731345\H,-2.4124129304,1.9737807524,0.9901680224\H,-2.486 0051812,-0.9911222762,0.8095893004\H,-1.8230130302,1.5452405199,2.9629

60628\H,-1.4709283265,1.2935077293,5.3561312732\H,1.2217971154,-1.8824 526758,6.7759216668\H,2.2962317871,-0.4904835142,6.7647794265\H,1.2447 609846,0.3289235906,8.859754433\H,0.1790198731,-1.0517868783,8.8708062 974\H,2.1599427103,-2.5782203612,9.0648846501\H,3.2246755858,-1.198840 359,9.0538376658\H,2.1648971353,-0.3651076099,11.1552494716\H,1.101254 6208, -1.7430715311, 11.1662787327\H, 3.078819519, -3.2763148517, 11.385372 1222\H,4.15070945,-1.8876833347,11.3742519808\H,3.0241528369,-2.115541 976,12.6990440946\H,1.845267309,-1.2699717958,4.5958292588\H,1.4975887 344,-1.0220040036,2.228709821\H,-1.258841938,1.8776020625,-3.912818990 5\H,-2.9232525998,-0.6362059653,-5.7835125188\H,-2.5883979838,1.089104 0541,-5.7615652986\H,-0.5773526554,-1.1442004027,-6.1882375179\H,-0.04 04622984,1.8387217361,-5.997765459\H,1.1658263976,0.5690398742,-6.1464 096887\H,-1.9971815051,-0.480647013,-8.1514748389\H,-1.4075514603,1.15 06827672,-8.019384479\H,0.9064726475,0.3684280432,-8.5167116936\H,0.35 1666638,-1.2820762526,-8.5467225855\H,-1.1243696112,-0.7467992613,-10. 486043818\H,-0.5868033731,0.9085289047,-10.4440760727\H,0.643675891,-0 .3642123217,-12.1909330484\H,1.7593153349,0.1671493045,-10.946452248\H ,1.2191366996,-1.5012521342,-10.985884692\\Version=x86-Linux-G98RevA.9 \HF=-1290.0278142\RMSD=4.154e-09\RMSF=3.459e-06\Dipole=0.2924159,-0.11 93644,-0.7673615\PG=C01 [X(C21H40B10O3)]\\@

1[4] conformer D (anti)

1\1\GINC-MONSTER\F0pt\RHF\6-31G(d)\C21H40B1003\PIOTR\11-Mar-2006\0\\#P HF/6-31G* FOPT GEOM(NOANGLE, NODISTANCE) FCHECK\\1-(4-Pentyloxyphenyl) $-12-(5-butyldiox[1,3]an-2-yl)-p-carborane C1, second orien \0,1\B,-1.8$ 919797049,0.740116357,-1.2540825875\B,-0.785899756,2.1422491725,-1.266 0277216\B,-0.9172064234,-0.7395926159,-1.4933511225\B,0.8680745794,1.5 384874343,-1.5329947689\B,0.7930726003,-0.2470507728,-1.663727046\B,1. 299169413,0.5224037634,-0.1521185704\B,0.1932710217,-0.8801488003,-0.1 25589567\B,0.3267122747,1.99514097,0.0972482515\B,-1.3800514637,1.4985 413514,0.2617123102\B,-1.4642467837,-0.2782497725,0.1304859925\C,-0.10 22697071,0.5055449512,0.858922466\C,0.109228146,0.363652466,2.35567898 96\C,-0.702542818,1.0218753904,3.2813616293\C,-0.5019926443,0.88708427 72,4.6364291263\C,0.5249485776,0.0838848268,5.1231375131\O,0.640925549 5,0.0157469872,6.4616034838\C,1.6483650926,-0.7712524605,7.0475279092\ C,1.5178517074,-0.6421291757,8.5546285402\C,2.5697541835,-1.4614699633 ,9.304096409\C,2.4482461331,-1.339263722,10.824222204\C,3.4989473915,-2.1576632383,11.5733073378\C,1.3419904439,-0.577697381,4.2218030847\C, 1.1266571118,-0.4316672231,2.8580234089\C,-0.4857574011,0.7530702268,-2.2367636022\C,-0.6899355908,0.9346565867,-3.7450209343\O,-1.683377763 1,0.0810196156,-4.1802322855\C,-1.9546364562,0.1935522773,-5.556879104 8\C,-0.68477455,-0.0433579292,-6.372810408\C,0.4038415788,0.8591248516 ,-5.7959664002\0,0.5007598884,0.6973033698,-4.4020590758\C,-0.87028296 65,0.2029260611,-7.8735935202\C,-1.8193940302,-0.7770298494,-8.5699190 375\C,-1.8911538547,-0.5583891557,-10.0825689129\C,-2.8415044573,-1.53 04975193,-10.7804570949\H,-2.9614953933,0.836388826,-1.7357895857\H,-1 .132742688,3.1480059898,-1.7758967822\H,-1.3390437453,-1.6361824155,-2 .1242159927\H,1.6203197615,2.1500399887,-2.2004364642\H,1.5020866239,-0.8169945717,-2.4068919375\H,2.3732314793,0.4478115721,0.3255578508\H, 440930142\H,-2.1072404137,2.080086583,0.980326141\H,-2.2163591537,-0.8 840071235,0.8059343297\H,-1.5041135033,1.6497064426,2.9485709179\H,-1. 1332900733,1.3983589693,5.3389266928\H,1.5338105402,-1.8071004946,6.74 06363608\H,2.6247655581,-0.428199438,6.7169890892\H,1.6022684602,0.407 7685033,8.8197563508\H,0.5201710522,-0.9600044098,8.8432212937\H,2.484 3131331, -2.5097740901, 9.0223968039\H, 3.5653785107, -1.1433136715, 8.9989 556545\H,2.5347988537,-0.2929402592,11.1082099692\H,1.454849204,-1.658 0053336,11.1316229008\H,3.4157928273,-3.2144747921,11.3358557695\H,4.5

1[4] conformer E (syn)

 $1\GINC-MONSTER\FOpt\RHF\6-31G(d)\C21H40B1003\PIOTR\13-Mar-2006\0\FPIOTR$ HF/6-31G* FOPT GEOM(NOANGLE, NODISTANCE) FCHECK\\1-(4-Pentyloxyphenyl) -12-(5-butyldiox[1,3]an-2-yl)-p-carborane C1, E syn\\0,1\B,-0.81503353 59,1.63460455,-0.7209614215\B,-1.107945316,0.4773025708,-2.0478396899\ B,-1.4314990183,0.9098054945,0.7975577046\B,-1.9180079428,-0.952287529 -1.3614050998\B,-2.1121314179,-0.6911553533,0.4018763094\B,-0.8051109 92,-1.7080856758,-0.2167807189\B,-0.496356495,-0.5624718502,1.11460985 23\B,-0.1808117025,-0.9930811992,-1.7267566556\B,0.4961917219,0.608759 5613,-1.3302441396\B,0.2979653531,0.8760845688,0.4252363708\C,0.600745 5374,-0.7004883706,-0.2143612464\C,1.9690569366,-1.3104925072,0.032558 1426\C,2.1356169381,-2.6752480933,0.275202969\C,3.3805248819,-3.218248 5743,0.4985792578\C,4.5156877666,-2.4132677388,0.4888854969\O,5.686135 3847,-3.0358201218,0.7172414909\C,6.8879611597,-2.3057526315,0.7283456 057\C,8.0178991366,-3.2798694574,1.0101315002\C,9.384610183,-2.5940816 332,1.0463645323\C,10.5316047142,-3.5659995325,1.3296677523\C,11.89714 22836, -2.8812584903, 1.3659434854 \C, 4.3723940329, -1.0566122314, 0.251211 3476\C,3.1098297375,-0.5240627289,0.0274479377\C,-2.1937037791,0.61407 9694,-0.7185741152\C,-3.5467654682,1.2655479539,-1.0258512648\O,-3.684 2846383,2.4150923422,-0.2743032892\C,-4.8949617932,3.0944846841,-0.506 9116004\C,-6.0843032102,2.1707418076,-0.2489392595\C,-5.8406910721,0.8 82839826,-1.0326545524\0,-4.560618016,0.3669461111,-0.7610206313\C,-7. 4330690498,2.7967624326,-0.6181838121\C,-7.8381206647,3.9970001914,0.2 428377114\C,-9.2358602134,4.5214951438,-0.0922627602\C,-9.6415912989,5 $.7227467421, 0.7607238262 \ H, -0.9243563808, 2.7904041229, -0.9145835348 \ H,$ $-1.4293987649, 0.8800780569, -3.1091227366 \ H, -1.9372967986, 1.5873807214, -3.1091227366 \ H, -1.9372967986, -3.1091227366 \ H, -3.1091227466 \ H, -3.10912766 \ H, -3.10912766$ 1.6129614909\H,-2.7582240554,-1.5065824326,-1.9714098668\H,-3.07232458 31, -1.0838608593, 0.9526482455 \H, -0.7363099435, -2.8682886324, -0.0369322 75\H,-0.1759314194,-0.9613632177,2.1763402619\H,0.3408373799,-1.674284 4195,-2.5347293065\H,1.4581747741,0.9940416601,-1.8901741059\H,1.13365 36836,1.4344665068,1.039434902\H,1.2876699841,-3.3295266792,0.29215944 74\H,3.4961070904,-4.2697559429,0.6840772648\H,7.033302065,-1.81810906 31,-0.2315516577\H,6.8460556263,-1.5361346006,1.4940044618\H,7.8208148 438,-3.7723107109,1.9579446091\H,8.0065426389,-4.0520249103,0.24635900 93\H,9.5670535474,-2.0939203221,0.0965409378\H,9.3814898603,-1.8144768 886,1.8065004873\H,10.3523128706,-4.0658057818,2.2788628952\H,10.53767 84454, -4.3449826559, 0.5706689424 \H, 12.1203418132, -2.4003886804, 0.41773 32955\H,11.9335343272,-2.1190577947,2.1391678743\H,12.688970536,-3.595 4990473,1.5685994616\H,5.2202405506,-0.4002735409,0.2357555296\H,3.036 490533,0.5305633174,-0.1522530941\H,-3.5740511484,1.5281680001,-2.0824 175014\H,-4.8871464295,3.9475122471,0.1544877595\H,-4.9158276861,3.460 3651631,-1.5340902173\H,-6.0784530463,1.9152389939,0.80752633\H,-5.939 1538903,1.0651645238,-2.1030959105\H,-6.5444405661,0.1100345254,-0.757

1[4] conformer E (anti)

1\1\GINC-MONSTER\F0pt\RHF\6-31G(d)\C21H40B1003\PIOTR\26-Dec-2005\0\\#P HF/6-31G* FOPT GEOM(NOANGLE, NODISTANCE) FCHECK\\1-(4-Pentyloxyphenyl)-12-(5-butyldiox[1,3]an-2-yl)-p-carborane C1, high dipole $\sqrt{0,1/B,-0.7}$ 205093936,1.8900722869,-0.6462302222\B,-1.0008098274,0.7406251569,-1.9 826406295\B,-1.3335837177,1.1481562282,0.8653797348\B,-1.7997269546,-0 .7012438161,-1.3089686108\B,-1.9995216165,-0.4555097217,0.4558805362\B ,-0.682515131,-1.4562142805,-0.1680019678\B,-0.38633045,-0.3183989366, 1.1728893055\B,-0.0615470476,-0.7241040369,-1.6711480562\B,0.600755233 4,0.8804019137,-1.2608630809\B,0.3968085934,1.1322933011,0.4962536116\ C,0.7145180285,-0.436535305,-0.1549670966\C,2.0876129135,-1.0365613392 ,0.0898732558\C,2.2656350799,-2.4017567299,0.3216501599\C,3.5147941865 ,-2.9356626283,0.5431937635\C,4.6428779145,-2.1207364156,0.5424991543\ O, 5.8182611451, -2.7348730914, 0.7682860879\C, 7.0137522539, -1.9946185356 ,0.7867557491\C,8.151670624,-2.9611753496,1.0623635801\C,9.5123868974, -2.2639850719,1.1058892972\C,10.6673350737,-3.2282287799,1.3830012666\ C,12.0268728887,-2.5320806673,1.426600886\C,4.4881850152,-0.763484407, 0.315622944\C,3.2214540014,-0.2401697467,0.0935643342\C,-2.0902653659, 0.8576356609,-0.6545450907\C,-3.4482435229,1.4999452772,-0.9594017666\ O,-3.5973041208,2.642520145,-0.1990725142\C,-4.8163602703,3.3048807492 ,-0.4308966221\C,-5.9979760592,2.3699156244,-0.1821990668\C,-5.7423456 76,1.0894598128,-0.9756081047\0,-4.4545106751,0.5905942054,-0.70360695 34\C,-7.325255535,3.0496302141,-0.5339472918\C,-8.5742319029,2.2489339 011,-0.1532767434\C,-9.872472465,3.0110097674,-0.4269140988\C,-11.1213 134091,2.213402913,-0.0535697349\H,-0.8395417881,3.0463340551,-0.83108 53835\H,-1.3236713457,1.1488574568,-3.0414029512\H,-1.8468717278,1.814 9488924,1.6849889714\H,-2.6339017197,-1.2580736741,-1.9249464102\H,-2. 9573145808,-0.8608179304,1.0016768315\H,-0.6040333718,-2.6171524403,0. 0029798349\H,-0.0644652238,-0.7227686915,2.2321217901\H,0.4675566351,-1.3944887573,-2.4833223884\H,1.5604697222,1.2783600187,-1.8157964926\H ,1.226412156,1.6931259085,1.1164230962\H,1.4234310417,-3.0635671909,0. 331437289\H,3.6392154134,-3.9876158609,0.7203084968\H,7.1560979046,-1. 4981621271,-0.1690636078\H,6.9642680889,-1.231454191,1.5584224995\H,7. 9576119326,-3.4628108877,2.0059834015\H,8.1479580053,-3.7273408278,0.2 924922027\H,9.6917172899,-1.7547317548,0.1603058244\H,9.5015767477,-1. 4905106197,1.8721950659\H,10.4911188713,-3.7371263236,2.3279265718\H,1 0.681106331,-4.0010432331,0.6178241525\H,12.2471764193,-2.0417781003,0 .4825605592\H,12.0557061798,-1.7757832439,2.2059220607\H,12.824559582, -3.2410779874,1.6246468825\H,5.3302665983,-0.0996274682,0.307380703\H, 3.1392365166,0.8152144597,-0.077647038\H,-3.4756287787,1.7708273015,-2 .0138636222\H,-4.8327399914,4.1539510946,0.2377208229\H,-4.8372300587, 3.6794183548,-1.4546495813\H,-5.9907393557,2.1092397608,0.8729965773\H ,-5.8405947872,1.2807648144,-2.0447766536\H,-6.4278037849,0.2988825117 ,-0.7104293735\H,-7.3619876645,4.0121510574,-0.0272757974\H,-7.3488634 005,3.2695935676,-1.6004442093\H,-8.5972282237,1.3088764506,-0.6996103 031\H,-8.5260759153,1.9883152138,0.9023089288\H,-9.8630420905,3.947268 4075,0.1267956625\H,-9.9172107074,3.2797992958,-1.4801910747\H,-12.024 1921493,2.7804073803,-0.2569599136\H,-11.1786788299,1.2868829799,-0.61 77794208\H,-11.1221232023,1.9574781166,1.0020872844\\Version=x86-Linux

-G98RevA.9\HF=-1290.0277808\RMSD=4.168e-09\RMSF=5.002e-06\Dipole=-0.41 02041,0.7377338,-0.2790671\PG=C01 [X(C21H40B10O3)]\\@

1[4] conformer F (syn)

HF/6-31G* FOPT GEOM(NOANGLE, NODISTANCE) FCHECK\\1-(4-Pentyloxyphenyl)-12-(5-butyldiox[1,3]an-2-yl)-p-carborane C1\\0,1\B,-1.785523075,1.45 95150449,-0.9767078991\B,-1.8163457102,1.5008035431,0.8075286746\B,-0. 0739158445,1.5016366217,-1.5060512285\B,-0.1337824971,1.5855536559,1.3 843981847\B,0.9478896304,1.5777102468,-0.0455842978\B,0.6840965885,0.1 004237659,0.8889648935\B,0.7195409881,0.0399990768,-0.8930148209\B,-1. 0184290078,0.0464653921,1.4176432841\B,-2.0388499975,-0.0264280515,-0. 0433573968\B,-0.9646112329,-0.027032368,-1.471359768\C,-0.4985859742,-0.7980702975,0.0031642685\C,-0.4702998931,-2.3159349545,0.0255986517\C ,0.4907812374,-3.0221890315,0.7284372478\C,0.5153738721,-4.4112168905, 0.7471756564\C,-0.4404332921,-5.1279958808,0.0481764679\O,-0.512173699 9,-6.470359841,-0.0035802951\C,0.4282310585,-7.258162789,0.683908548\C ,0.083307986,-8.7151252437,0.4320243009\C,1.0458736537,-9.6731760977,1 .1357190527\C,0.7083044687,-11.1448379686,0.8891899968\C,1.6697231934, -12.1022128588,1.5920464198\C,-1.4140444169,-4.434152162,-0.6652583079 \C,-1.4251496912,-3.058684361,-0.6739619278\C,-0.601698354,2.327818388 6,-0.0897433429\C,-0.7034096494,3.8572476347,-0.0989812806\O,-0.884113 9522,4.2980190174,-1.3946336047\C,-1.0036769837,5.6962456038,-1.490596 5834\C,0.2145334577,6.3880774345,-0.88265249\C,0.4224022564,5.80371603 86,0.5136714424\0,0.436441353,4.3971267553,0.4617001056\C,0.0456974109 ,7.9108612638,-0.8866766549\C,1.289472224,8.6932309249,-0.4543675161\C ,1.1080527671,10.207701808,-0.5748638277\C,2.3449049249,10.9922534337, -0.1391518283\H,-2.611534473,2.0291599165,-1.591844358\H,-2.6570944391 ,2.1175417845,1.3594544273\H,0.2298988507,2.0885216492,-2.4771522883\H ,0.1375259688,2.2386583329,2.3252745142\H,1.9347807259,2.2146246179,-0 $.0402574281 \\ \text{H}, 1.5195528709, -0.4317750463, 1.523318108 \\ \text{H}, 1.5585974008, -0.4317750463, 1.5233180 \\ \text{H}, 1.5585974008, -0.431758 \\ \text{H}, 1.5585974008, -0.4317750463, 1.5585974008 \\ \text{H}, 1.5585974008, -0.431758 \\ \text{H}, 1.5585974008, -0.43178 \\ \text{H}, 1.55988 \\ \text$.5742238901,-1.4477546291\H,-1.3210810712,-0.5572509904,2.3834978825\H ,-3.027433938,-0.6666381584,-0.0372242005\H,-1.2338527007,-0.675562652 7,-2.416972098\H,1.247818718,-2.503239941,1.2808759342\H,1.2832450012, 0.3919008125,-7.0341749384,1.7463565903\H,-0.9340371958,-8.8922516841, 0.7686741715\H,0.095207481,-8.892452739,-0.6394699218\H,2.063496246,-9 .4794486134,0.8002945457\H,1.0352362351,-9.4792519927,2.2071138069\H,-0.3074189575,-11.3411580328,1.2248918055\H,0.7198005356,-11.3413509841 --0.1804708369\H,2.6905796357,-11.9532207622,1.2517478597\H,1.65540977 $27, -11.953024715, 2.6680080593 \ \ \ 1.4046411982, -13.1368389265, 1.39843484$ 78\H,-2.1532307062,-4.9941378654,-1.206954111\H,-2.1901763816,-2.55987 18519,-1.2357778628\H,-1.5651711871,4.1517938042,0.4982094061\H,-1.105 4535697,5.9209821033,-2.54289479\H,-1.9147985589,6.0183406117,-0.98571 62104\H,1.0778306081,6.1157957264,-1.4843419977\H,-0.3707000073,6.1355 516878,1.184681808\H,1.3696933967,6.0932602072,0.9425970502\H,-0.22822 47122,8.2224456054,-1.8928578826\H,-0.7929126356,8.1846870301,-0.24784 8915\H,1.5451837022,8.4511181436,0.574579959\H,2.1378973523,8.38339252 54,-1.0615635035\H,0.864932099,10.4596051207,-1.6047676856\H,0.2545349 162,10.5170623424,0.0246398455\H,2.1862136261,12.061405901,-0.23822183 44\H,2.5928503094,10.7896474029,0.8988855221\H,3.2090209604,10.7287717 987,-0.7423130695\\Version=x86-Linux-G98RevA.9\HF=-1290.0278181\RMSD=3 .471e-09\RMSF=7.618e-06\Dipole=0.24896,0.7089321,0.3263155\PG=C01 [X(C 21H40B1003)]\\@

1[4] conformer F (anti)

1\1\GINC-MASTER\FOpt\RHF\6-31G(d)\C21H40B1003\PIOTR\13-Mar-2006\0\\#P HF/6-31G* FOPT GEOM(NOANGLE,NODISTANCE) FCHECK\\1-(4-Pentyloxyphenyl)-

12-(5-butyldiox[1,3]an-2-yl)-p-carborane, F anti\\0,1\B,-1.6359929423, 1.459169056,-0.7359838319\B,-1.6497467218,1.5095467901,1.048227881\B,0 .0701392396,1.5078054294,-1.2821891957\B,0.0378546045,1.606374039,1.60 82675248\B,1.1056161513,1.5969679906,0.1678736555\B,0.8589279392,0.123 1049324,1.1124858832\B,0.8774502497,0.0536964841,-0.6694249543\B,-0.83 80543309,0.0627392642,1.6580081361\B,-1.8721610766,-0.0232604323,0.207 3900467\B,-0.8118408529,-0.0254634583,-1.2309964872\C,-0.3273743017,-0 .7863080219,0.2428341625\C,-0.2903035786,-2.3038361605,0.272890734\C,0 .6819162856,-3.0009955575,0.9694945657\C,0.714513368,-4.3897080572,0.9 951732552\C,-0.2443141464,-5.1155501586,0.309749372\O,-0.3089547189,-6 .4584928001,0.2658111643\C,0.6430113197,-7.2373667123,0.9474564686\C,0 .3037260215,-8.6974674907,0.7065005352\C,1.2789371738,-9.6464631823,1. 4049916194\C,0.9471270421,-11.1212049431,1.1693656411\C,1.9211656116,-12.0695798397,1.8670143174\C,-1.2290774339,-4.4309460586,-0.3972535675 \C, -1.2480125484, -3.0556029593, -0.4129658089\C, -0.4483971998, 2.3384479 192,0.1349340712\C,-0.5584245217,3.8672550286,0.1190022921\O,-0.753145 7521,4.300209942,-1.1770195954\C,-0.8864179241,5.6972282661,-1.2864740 525\C,0.3339065423,6.3986131542,-0.6921211331\C,0.5568026681,5.8222599 523,0.704448187\0,0.5835615904,4.4164109294,0.6667195035\C,0.197445069 3,7.923960288,-0.6461935466\C,0.1437263519,8.6027717372,-2.0181720389\ C,0.1140723015,10.129561672,-1.9227983402\C,0.0546684049,10.8106600721 -3.2894677719\H,-2.471045372,2.0211584597,-1.3459635162\H,-2.48849460 86,2.1245824519,1.6050756975\H,0.3612768022,2.091227989,-2.2592393295\ H,0.3147506567,2.2658020589,2.5430657349\H,2.0889834988,2.2392886281,0 .1603634691\H,1.7033359712,-0.4013681961,1.7413979725\H,1.7144093065,-0.5588879779,-1.2291227828\H,-1.128002634,-0.5376353794,2.6298210107\H , -2.8571896808, -0.6686764409, 0.2263789424\H, -1.0867763147, -0.680315864 5,-2.1705986094\H,1.4416546695,-2.4749682449,1.5114426375\H,1.49083491 36, -4.8773097908, 1.5514674421\H, 1.6393066882, -7.0098665835, 0.578769892 8\H,0.6164716575,-7.0082516286,2.0091125981\H,-0.7090689754,-8.8785409 609,1.0545879437\H,0.3055368692,-8.8801528325,-0.3641617015\H,2.291923 2748,-9.4487523485,1.0580518921\H,1.2782914181,-9.4471519993,2.4754507 146\H,-0.0639428295,-11.3214956764,1.5165753964\H,0.9486623176,-11.323 0895252,0.1006438908\H,2.9375868268,-11.9166089917,1.5153939803\H,1.91 71444656,-11.9150033454,2.9423024153\H,1.6599359299,-13.1066406791,1.6 813633388\H,-1.9706644946,-4.9977242975,-0.9284857052\H,-2.021529271,-2.564031486,-0.9695121657\H,-1.4162248646,4.160206052,0.7226463702\H,-1.004262161,5.9013983399,-2.3398392843\H,-1.7941174031,6.017844003,-0. 7739607325\H,1.1952171097,6.1281203863,-1.2974469393\H,-0.2311629876,6 .1524565422,1.3818412214\H,1.5062602433,6.1333174778,1.1167567655\H,-0 .6911546073,8.1917873091,-0.0760995272\H,1.0431533424,8.3269624915,-0. 0922116138\H,1.0074710962,8.2959916745,-2.6049729946\H,-0.7333960261,8 .2682828451,-2.5672557373\H,-0.7439783686,10.4367550734,-1.3286721101\ H,0.9956273701,10.4731926696,-1.3860916878\H,0.0370626197,11.891233469 4,-3.1887656731\H,0.9170346742,10.5489240514,-3.895883053\H,-0.8357504 13,10.5151415416,-3.8370618052\\Version=x86-Linux-G98RevA.9\HF=-1290.0 278185\RMSD=4.868e-09\RMSF=2.465e-06\Dipole=0.2242145,0.7098069,0.2861 259\PG=C01 [X(C21H40B10O3)]\\@

9. References

(1) Dunmur, D.; Toriyama, K. In *Handbook of Liquid Crystals*; Demus, D., Goodby, J., Gray, G. W., Spiess, H.-W., Vill, V., Eds.; Wiley-VCH: New York, 1998; Vol. 1, p 215-230.

(2) Ohtsuka, T.; Ohnishi, H.; Takatsu, H. in Physical Properties of Liquid Crystals: Nematics, D. A. Dunmur, A. Fukuda, and G. R. Luckhurst, Eds; IEE, London, 2001, pp 515-522.

(3) Urban, S.; Kedzierski, J.; Dabrowski, R. Z. Naturforsch. 2000, 55A, 449-456.

(4) Urban, S. in Physical Properties of Liquid Crystals: Nematics, D. A. Dunmur, A. Fukuda, and G. R. Luckhurst, Eds; IEE, London, 2001, pp 267-276.

(5) Raszewski, Z.; Dabrowski, R.; Stolarzowa, Z.; Zmija, J. *Cryst. Res. Technol.* **1987**, *22*, 835-844.

(6) Dunmur, D.; Toriyama, K. In *Handbook of Liquid Crystals*; Demus, D., Goodby, J., Gray, G. W., Spiess, H.-W., Vill, V., Eds.; Wiley-VCH: New York, 1998; Vol. 1, p 231-252.

(7) Gaussian 98, Revision A.9, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L.

Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.

(8) Ohta, K.; Januszko, A.; Kaszynski, P.; Nagamine, T.; Sasnouski, G.; Endo, Y. *Liq. Cryst.* **2004**, *31*, 671-682.

(9) Alagui, A.; Apparu, M.; Pasqualini, R.; Vidal, M. *Bull. Soc. Chim. Fr.* **1991**, *128*, 286-295.

(10) Adkins, H.; Billica, H. R. J. Am. Chem. Soc. 1948, 70, 3121-3125.

(11) Ludwig, B. J.; Powell, L. S.; Berger, F. M. J. Med. Chem. 1969, 12, 462-472.

(12) Dong, C. C.; Styring, P.; Goodby, J. W.; Chan, L. K. M. J. Mater. Chem. **1999**, *9*, 1669-1677.

(13) Vorbrodt, H.-M.; Deresch, S.; Kresse, H.; Wiegeleben, A.; Demus, D.; Zaschke, H. J. Prakt. Chem. **1981**, *323*, 902-913.

(14) Skarzewski, J.; Mlochowski, J. *Tetrahedron*, **1983**, *39*, 309-312.

(15) Guanti, G.; Narisano, E.; Podgorski, T.; Thea, S.; Williams, A. *Tetrahedron*, **1990**, *46*, 7081-7092.

(16) Choi, Y. M.; Kucharczyk, N.; Sofia, R. D. Tetrahedron, 1986, 42, 6399-6404.

(17) Haramoto, Y.; Akazawa, K.; Kamogawa, H. Bull. Chem. Soc. Jpn. **1984**, *57*, 3173-3176.

(18) Sun, G.-X.; Chen, B.; Tang, H.; Xu, S.-Y. J. Mater. Chem. 2003, 13, 742-748.

(19) Schubert, H., von,; Zaschke, H. J. Prakt. Chem. 1970, 312, 494-506.