Fabrication of helical hybrid silica bundles

Yonggang Yang*^a, Miho Nakazawa^b, Masahiro Suzuki^b, Hirofusa Shirai^b and Kenji Hanabusa*^b

^a School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 215123, P.R. China. E-mail: ygyang@suda.edu.cn ^b Department of Functional Polymer Science, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan. E-mail: hanaken@giptc.shinshu-u.ac.jp

Solvents	LL-12	LL-10	LL -9	LL- 8	LL- 7	LL -6
Water	Ι	Ι	Ι	Ι	Ι	Ι
Hexane	Ι	Ι	Ι	Ι	Ι	Ι
Cyclohexane	Ι	Ι	Ι	Ι	Ι	Ι
Ethyl acetate	Ι	Ι	Ι	Ι	Ι	Ι
Acetone	Ι	Ι	Ι	Ι	Ι	Ι
Acetonitrile	Ι	Ι	Ι	Ι	Ι	Ι
Methanol	Р	O -gel(100) \rightarrow P	Р	Tl-gel(60)	Р	S(50)
Ethanol	Tl-gel(40)	$Tl-gel(30) \rightarrow P$	G(50)→P	Tl-gel(30)	Р	PG(50)
1-Propanol	Tl-gel(40)	G-gel(60)→P	G(50)→P	Tl-gel(30)	Р	PG(50)
1-Butanol	Tl-gel(40)	Tl-gel(50)→P	Tl-gel(45)	Tl-gel(30)	PG(50)	PG(50)
Cyclohexanone	Tl-gel(8)	Tl-gel(10)	Tl-gel(10)	Tl-gel(15)	Tl-gel(20)	Tl-gel(10)
THF	LG(50)	Tl-gel(10)	PG(20*)	Tl-gel(10)	PG(20*)	PG(20*)
1,4-Dioxane	Tl-gel(10)	Tl-gel(10)	O-gel(10)	Tl-gel(15)	Tl-gel(20)	Tl-gel(20)
Toluene	T-gel(5)	T-gel(5)	T-gel(30)	T-gel(10)	T-gel(15)	LG(25*)
Chlorobenzene	LG(T 50)	T-gel(5)	Tl-gel(20)	T-gel(5)	Tl-gel(30)	T-gel(30)
Nitrobenzene	Tl-gel(25)	Tl-gel(10)	Tl-gel(20)	Tl-gel(20)	Tl-gel(35)	Tl-gel(20)
DMF	O-gel(15)	Tl-gel(30)	PG(50)	Tl-gel(30)	PG(50)	Tl-gel(40)
DMSO	Tl-gel(40)	T-gel(40)	PG(50)	T-gel(40)	PG(50)	S(50)
Chloroform	T-gel(15)	T-gel(20)	VS(50)	T-gel(30)	S(50)	T-gel(30)

Table S1 Gelation properties and MGCs (mg/mL) of the silsesquioxanes.

T-gel; Transparent gel, Tl-gel; Translucent gel, O-gel; Opaque gel

S; Soluble, I; Insoluble, P; Precipitated, LG; Loose gel, PG; Partial gel, VS; Viscous solution

(*); Almost insoluble at the concentration above values.

 \rightarrow ; Overnight.

Figure S1. TEM images of the xerogel of the silisequioxanes prepared in dioxane (1 or 2 mg/mL).

Figure S2. FT-IR spectra of the silsesquioxane in chloroform solution, chloroform gel and 1,4-dioxane gels (Concentration: LL-12 chloroform solution: 5.0 mg/mL; LL-12 chloroform gel: 20 mg/mL; 1,4-dioxane gels: 5.0 mg/mL).

Fig. S3. FESEM image of LL-**H6** (preparation condition: 20 mg of LL-**6**, 1.0 mL of 1,4-dioxane, and 1.0 mL of 4.0 M HCl aq.).

Fig. S4. FESEM image of LL-**H7** (preparation condition: 20 mg of LL-**7**, 1.0 mL of 1,4-dioxane, and 1.0 mL of 4.0 M HCl aq.).

Fig. S5. FESEM image of LL-**H12** by **Method 3** (Preparation condition: 100 mg of LL-12, 1.0 mL of 1,4-dioxane, and 1.0 mL of 1.0 M HaOH aq.).

Fig. S6. FESEM image of LL-**H9** by **Method 4** (Preparation condition: 20 mg of LL-9, 1.0 mL of 1,4-dioxane, and 1.0 mL of 1.0 M HaOH aq.).

Fig. S7. Plausibe model for formation of helical bundles.

Fig. S8. Wide angle X-ray diffraction graphs of hybrid silica. (Acidic catalysis condition: 50 mg of

LL-12, 1.0 mL of 1,4-dioxane, and 1.0 mL of 4.0 M HCl.)

Fig. S9. Wide angle X-ray diffraction graphs of hybrid silica. (Basic condition: 25 mg of LL-**12**, 1.0 mL of 1,4-dioxane, and 1.0 mL of 1.0 M NaOH)

Fig. S10. Wide angle X-ray diffraction graphs of hybrid silica. (TBAF condition: 100 mg of LL-**12**, 1.0 mL of dioxane, and 1.0 mL of 0.05 M TBAF)

Fig. S11. Structure model of polysilsesquioxane LL-H12.

Fig. S12. Shape of a water droplet on the surface of DD-H12 thin film.