Supplementary Information

Fig S1. Raman spectrum of the Ta_3N_5 synthesised under high pressure in autoclave showing the signature peaks of graphitic carbon at 1570 and 1325 cm⁻¹

Fig S2. TGA trace showing the decomposition of Ta_3N_5 to Ta_5N_6 under nitrogen - the product is Ta_5N_6 by PXD

Fig S3. SEM micrograph of the product of reaction of $TaCl_5$ with commercial $LiNH_2$ under ambient pressure before washing with THF. Li is not detectable in the EDX.

Fig S4. SEM micrograph of the product of reaction of $TaCl_5$ with commercial $LiNH_2$ under reflux after washing with THF (sample 1).

Fig S5. Infrared spectrum of commercial LiNH₂ highlighting the peak corresponding to OH stretching.

(J. C. Decius and S. A. Lilley, J. Chem. Phys., 1970, 53, 2124)

Fig S6. TGA profile for the decomposition of Ta_3N_5 produced by the reaction between $TaCl_5$ and pure LiNH₂ under high pressure (sample 3) in oxygen

 $\label{eq:FigS7.} \textbf{Fig S7.} \ \text{SEM micrograph of the product of the reaction of } TaCl_5 \ \text{with } Mg_3N_2 \ \text{under ambient pressure after washing (sample 4)}$

Fig S8. Electron Diffraction Pattern of the product of the reaction of $TaCl_5$ with Mg_3N_2 under ambient pressure after washing (sample 4)