Supporting Information

Synthesis of Porous Silica with Hierarchical Structure Directed by a Silica Precursor Carrying a Pore-Generating Cage

Whirang Cho, Bong Jun Cha, Hyung Ik Lee[†], Ji Man Kim[†] and Kookheon Char*

School of Chemical and Biological Engineering Center for Functional Polymer Thin Films Seoul National University, San 56-1, Shillim-dong, Kwanak-gu, Seoul 151-744, Korea

[†]Department of Chemistry, Sungkyunkwan University Chunchun-dong, Jangan-gu, Suwon 440-746, Korea

^{*}To whom correspondence should be addressed.

(Tel: +82-2-880-7431; Fax: +82-2-873-1548; E-mail: khchar@plaza.snu.ac.kr)

Aging time (day)	Surface area ^a (m ² g ⁻¹)	Pore volume ^b (cm ³ g ⁻¹)	Pore diameter ^c (nm)	Unit cell parameter ^d (nm)	Wall thickness ^e (nm)
1	611	0.66	8.0	13.2	5.2
2	534	0.63	7.9	13.3	5.4
3	467	0.71	8.3	13.6	5.3

Table S1. Physicochemical properties of porous silicas (T7g1) prepared at different aging time obtained from the N_2 adsorption-desorption isotherms.

^a Surface area calculated with the BET method from N₂ adsorption. ^b Total pore volume calculated at $p/p_0 = 0.974$. ^c Pore diameter calculated by the BJH method. ^d Unit cell parameter obtained from SAXS results. ^e wall thickness = d - c.

Table S1 (Cho et al.)

Figure S1: Scanning Electron Microscopy images of calcined porous silicas prepared with: (a) TEOS only (T10); (b) adam-graft SQ introduced first followed by the addition of TEOS; (c) a mixture of TEOS and adam-grafted SQ added simultaneously.

Figure S1 (Cho et al.)

Figure S2: Small angle X-ray scattering patterns and FE-SEM images of porous silicas synthesized with varying the molar ratios between TEOS and adam-graft SQ in the presence of a triblock Pluronic P123 (EO₂₀PO₇₀EO₂₀: Mw = 5,800) template: (B) T7g1; (C) T5g1; (D) T4g1; (E) T3g1. (All scale bars are 1 μ m.)

Figure S2 (Cho et al.)