Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (C) The Royal Society of Chemistry 2009

Electronic Supplementary Information

Substantial Emission of NH₃ During Thermal Decomposition of Sodium Amidoborane, NaNH₂BH₃

by Karol Fijałkowski and Wojciech Grochala

<u>Contents</u>

Remarks on solubility of various phases in THF.
The ¹¹B NMR spectra.
The ¹H NMR spectra.
Chemical shifts and magnetic coupling constants.
Analysis of the spectra.

1. Remarks on solubility of various phases in THF.

Unfortunately, samples of SAB heated to 110° C and 250° C as well as Na₂NH are sparingly soluble in d₈-THF and their spectra will not be discussed here in detail (the ¹¹B NMR spectra contain only a small very broad signal at *ca.* –3.3 ppm while ¹H NMR spectra are dominated by signals from impurities). Other solvents were also tested (CD₃CH, D₂O) but they turned to chemically react with the samples. It should therefore be realized that intensity of various peaks appearing in the NMR spectra is not directly related to relative abundance of various phases in our samples, but rather to their solubilities in THF.

The recorded ¹¹B NMR and ¹H NMR spectra of various etherates are shown in Figures S1 and S2, respectively. The corresponding numerical data (chemical shift δ , ¹J (E, ¹H) magnetic coupling constant for the adjacent H and E nuclei, E=B, N) are shown in Table S1.

2. The ¹¹B NMR spectra.

Fig. S1¹¹B NMR spectra collected for: a) AB; b) as-synthesized SAB (25°C); c) SAB heated to 55°C. All spectra have been cut at the largest peaks to better expose the lower–intensity regions.

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (C) The Royal Society of Chemistry 2009 *3. The ¹H NMR spectra.*

Fig. S2 ¹H NMR spectra collected for: a) AB; b) as-synthesized SAB SAB (25°C); c) SAB heated to 55°C. Signals coming from traces of NaH and its impurities and from non-deuterated solvent (*) can be seen. Two spectra have been cut at the largest peak to expose the less–intense range.

4. Chemical shifts and magnetic coupling constants.

Supplementary Material (ESI) for Journal of Materials Chemistry

This journal is (C) The Royal Society of Chemistry 2009

Table S1. Chemical shifts δ [ppm] and magnetic coupling constants *J* [Hz] for signals appearing in the ¹H and ¹¹B NMR spectra of AB, as–synthesized SAB (25°C) and for sample of SAB heated to 55°C and then cooled down to room temperature. Abbreviations: sin = singlet, tri = triplet, qua = quartet, qui = quintet, NA = not applicable. AB98 = 98% AB from Aviabor, AB 90 = 90% AB from Aldrich. E stands for N or B.

AB 98		¹ H NMR			¹¹ B NMR		
25°C		δ [ppm]	$^{1}J(\mathrm{H,E})$ [Hz	2]	δ [ppm]	${}^{1}J(B,H)[Hz]$	
BH_3	qua	1.413	94	qua	-20.383	95	
BH_4	qua	_	_	qui	_	-	
NH_3	sin	3.988	37		NA	NA	
A B 00		¹ LI NIMD		¹¹ R NMP			
AD 90	,	N II S [mmm]	$\frac{1}{I}$ (U E) [U-	-1	D IN S [mmm]	$\frac{1}{I}$ (D U) [U ₂]	
25 C	<i>a</i> 119	0 [ppiii] 1 414	J (П,Е) [П2 03	el ano	20 282	J (B,H) [HZ]	
BH3 BH	qua	0.204	82	qua	-20.383	93	
NH ₂	qua tri	3 990	37	qui	-30.020 NA	NA NA	
1113	uı	5.770	57		11A	INA	
NaH	NaH ¹ H NMR				¹¹ B NMR		
25°C		δ [ppm]	$^{1}J(H,E)$ [Hz	:]	δ [ppm]	${}^{1}J(H,B)[Hz]$	
NaH	sin	1.729	NA		NA	NA	
GAD		1	1.00		110.01	1 (D	
SAB		¹ H N	MR	.1	¹¹ B N	MR	
SAB 25°C		¹ Η N δ [ppm]	MR ¹ J (H,E) [Hz	2] 	¹¹ B N δ [ppm]	$MR_{^{1}J(B,H)[Hz]}$	
SAB 25°C BH ₂	qua	¹ H N δ [ppm]	MR ¹ J (H,E) [Hz -	2] tri	¹¹ B N δ [ppm] -6.687	MR ¹ J (B,H) [Hz] 98	
SAB 25°C BH ₂ BH ₃	qua qua	¹ Η N δ [ppm] - 1.484	MR ¹ J (H,E) [Hz - 85	z] tri qua	¹¹ B N δ [ppm] -6.687 -20.094	MR ¹ J (B,H) [Hz] 98 86	
SAB 25°C BH ₂ BH ₃ BH ₄	qua qua qua	¹ H N δ [ppm] - 1.484 -	MR ⁻¹ J (H,E) [Hz - 85 - 20	2] tri qua qui	¹¹ B N δ [ppm] -6.687 -20.094 -	MR ¹ J (B,H) [Hz] 98 86 -	
SAB 25°C BH ₂ BH ₃ BH ₄ NH ₂	qua qua qua sin	¹ H N δ [ppm] - 1.484 - 0.673	MR ¹ J (H,E) [Hz - 85 - 20	z] tri qua qui	¹¹ B N δ [ppm] -6.687 -20.094 - NA	MR ¹ J (B,H) [Hz] 98 86 – NA	
SAB 25°C BH ₂ BH ₃ BH ₄ NH ₂ SAB	qua qua qua sin	¹ H N δ [ppm] - 1.484 - 0.673 ¹ H N	MR ¹ J (H,E) [Hz - 85 - 20 MR	?] tri qua qui	¹¹ B N δ [ppm] -6.687 -20.094 - NA ¹¹ B N	MR ¹ J (B,H) [Hz] 98 86 - NA	
SAB 25°C BH ₂ BH ₃ BH ₄ NH ₂ SAB 55°C	qua qua qua sin	¹ H N δ [ppm] - 1.484 - 0.673 ¹ H N δ [ppm]	MR ${}^{1}J(H,E)$ [Hz - 85 - 20 MR ${}^{1}J(H,E)$ [Hz	2] tri qua qui	¹¹ B N δ [ppm] -6.687 -20.094 - NA ¹¹ B N δ [ppm]	MR ${}^{1}J(B,H)[Hz]$ 98 86 - NA MR ${}^{1}J(B,H)[Hz]$	
SAB 25°C BH ₂ BH ₃ BH ₄ NH ₂ SAB 55°C BH ₂	qua qua qua sin	¹ H N δ [ppm] - 1.484 - 0.673 ¹ H N δ [ppm] 1.244	MR ¹ J (H,E) [Hz - 85 - 20 MR ¹ J (H,E) [Hz 85	2] tri qua qui 2] tri	¹¹ B N δ [ppm] -6.687 -20.094 - NA ¹¹ B N δ [ppm] -24.483	MR 1J (B,H) [Hz] 98 86 - NA MR 1J (B,H) [Hz] 83 8	
SAB 25°C BH ₂ BH ₃ BH ₄ NH ₂ SAB 55°C BH ₂ BH ₂	qua qua qua sin qua _	¹ H N δ [ppm] - 1.484 - 0.673 ¹ H N δ [ppm] 1.244 -	MR J (H,E) [Hz - 85 - 20 MR 1J (H,E) [Hz 85 - - 20 MR - - - - 20 - - - - - - 20 - - - - - - - 20 - - - - - -	2] tri qua qui 2] tri tri	¹¹ B N δ [ppm] -6.687 -20.094 - NA ¹¹ B N δ [ppm] -24.483 -19.230	MR 1J (B,H) [Hz] 98 86 - NA MR 1J (B,H) [Hz] 83 91	
SAB 25°C BH ₂ BH ₃ BH ₄ NH ₂ SAB 55°C BH ₂ BH ₂ BH ₂ BH ₃	qua qua qua sin qua – qua	¹ H N δ [ppm] - 1.484 - 0.673 ¹ H N δ [ppm] 1.244 - 1.553	MR J (H,E) [Hz - 85 - 20 MR 1J (H,E) [Hz 85 - 83 - 83 - 85 - 85 - 85 - 85 - 85 - 85 - 85 - 20 MR - 85 - 85 - 20 MR - 83 - 83 - 83 - - - 83 - - - - - - - 83 - 83 - 83 - - - - - -	e] tri qua qui !] !] tri tri qua	11 B N δ [ppm] -6.687 -20.094 - NA 11 B N δ [ppm] -24.483 -19.230 -21.343	MR 1J (B,H) [Hz] 98 86 - NA MR 1J (B,H) [Hz] 83 91 84	
SAB 25°C BH ₂ BH ₃ BH ₄ NH ₂ SAB 55°C BH ₂ BH ₂ BH ₂ BH ₃ BH ₄	qua qua qua sin qua _ qua qua	1 H N δ [ppm] - 1.484 - 0.673 1 H N δ [ppm] 1.244 - 1.553 -0.545	MR J (H,E) [Hz - - 20 MR J (H,E) [Hz 85 - 20 MR - 83 81	e] tri qua qui tri tri qua qui	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	MR ¹ J (B,H) [Hz] 98 86 - NA MR ¹ J (B,H) [Hz] 83 91 84 81	
SAB 25°C BH ₂ BH ₃ BH ₄ NH ₂ SAB 55°C BH ₂ BH ₂ BH ₃ BH ₄ NH ₂	qua qua sin qua _ qua qua sin	1 H N δ [ppm] - 1.484 - 0.673 1 H N δ [ppm] 1.244 - 1.553 -0.545 0.443	MR J (H,E) [Hz 85 - 20 MR 1J (H,E) [Hz 85 - 83 81 - - -	2] tri qua qui tri tri qua qui	¹¹ B N δ [ppm] -6.687 -20.094 - NA ¹¹ B N δ [ppm] -24.483 -19.230 -21.343 -43.643 NA	$\begin{array}{c} MR \\ {}^{1}J(B,H) [Hz] \\ 98 \\ 86 \\ - \\ NA \\ \\ MR \\ {}^{1}J(B,H) [Hz] \\ 83 \\ 91 \\ 84 \\ 81 \\ NA \\ \end{array}$	

5. Analysis of the spectra.

Most of signals appearing in the ¹¹B spectra are split into multiplets, quintet for $[BH_4]$, quartet for $[BH_3]$ and triplet for $[BH_2]$ functional groups (Table S1). The ¹¹B NMR spectrum of AB (Figure 8) contains only a quartet at -20.38 ppm (BH₃); the smaller-purity AB (90%) yields also small quintet at -36.03 ppm (trace BH₄⁻ species). The small $[BH_4]$ signal cannot come from the diammoniate of diborane, DADB = $[(BH_2)(NH_3)_2]^+(BH_4^-)$, since it is not accompanied by the corresponding triplet from the $[BH_2]$ group.

The spectrum of freshly prepared SAB consists of a strong quartet at -20.09 ppm (BH₃) and a weaker triplet at -6.69 ppm (BH₂). Main signal from the BH₃ group downshifts only slightly upon H \rightarrow Na substitution; similar effect has been observed in the MAS ¹¹B NMR spectra for solid AB and SAB.ⁱ Again, the small [BH₂] signal cannot come from the hypothetical sodium analogue of DADB = [(BH₂)(NH₂Na)₂]⁺(BH₄⁻), since it is not accompanied by the corresponding quintet from the [BH₄] group; an unidentified BH₂ group– containing THF–soluble minority phase must be responsible for the appearance of this signal.

¹¹B NMR spectrum of SAB heated to 55°C and cooled down to room temperature is different to the one collected for the as-prepared sample (Figure S1) It contains a strong quartet at -21.34 ppm) from BH₃ group, two weak triplets at -19.23 ppm and -24.48 ppm (BH₂) and a very weak quintet at -43.64 ppm (BH₄) (Table S1). Presence of new signals from BH₂ and BH₄ groups as compared to freshly-prepared SAB indicates occurrence at

Supplementary Material (ESI) for Journal of Materials Chemistry

This journal is (C) The Royal Society of Chemistry 2009

55°C of some endothermic intermolecular rearrangement reaction associated with no mass loss, which precedes thermal decomposition of SAB (see section 1 of the main paper). We notice that the appearance of similar signals from [BH₂] groups (downshifted with respect to signals from [BH₃] group) and [BH₄] groups (upshifted) was also observed in the MAS ¹¹B NMR study of thermal decomposition of AB. Their appearance in the spectra of SAB may indicate similarity of principal mechanisms of thermal decomposition for AB and SAB.

The ¹H NMR spectra (Figure S2) of SAB are more complicated than the ¹¹B spectra, largely due to coupling between protons and two different isotopes of B. Coupling with ¹¹B (I=3/2, 80%) yields quartets, while coupling with ¹⁰B (I=3, 20%) yields septets (usually the coupling constants differ a lot), and the two multiplets mutually overlap. In the analysis below we will not discuss the septets. In addition, signals from protons attached to N are often absent probably due to their much faster relaxation times or very fast exchange dynamics.

The ¹H NMR spectrum of as-prepared SAB consists of a quartet centered at 1.484 ppm from the [BH₃] group (¹J (H,B) of 85 Hz) and a singlet at 0.673 ppm from the [NH₂] group; trace splitting of the latter with the ¹J (H,N) of 20 Hz is captured in our experiments. The spectrum gets more complicated as SAB is heated to 55°C and cooled down to room temperature. The main [BH₃] signal is substantially upshifted (by nearly 0.07 ppm), which suggests that the [BH₃] group is now found in a new chemical environement. In addition, new signals from [BH₂] group appear at 1.244 ppm (corresponding to the signal in the ¹¹B NMR at -24.483 ppm); a very small quartet from the trace BH₄⁻ anions is also found at -0.545 ppm (corresponding to the signal in the ¹¹B NMR at -43.64 ppm).

The large signal from the $[NH_2]$ group originally at 0.673 ppm disappears (a small singlet is found at a comparable chemical shift of 0.443 ppm) but a new very intense and substantially downshifted signal appears at -1.007 ppm. The dramatic change of the chemical shift of $[NH_x]$ protons indicate that this functional group is found in a completely new chemical environment. Since the $[NH_x]$ protons are now more shielded than for pristine SAB, we anticipate that they might be embedded in an imide [NH] group which is much more basic than the amide $[NH_2]$ one. The chemical species which contains this moiety must be much more soluble in THF than parent SAB since the former one predominates the ¹H NMR spectra; recollect, SAB is a major crystalline phase as evidenced by XRDPs (section 3 of main paper). Unfortunately, direct comparison with source of imide anions (Na₂NH) is prohibited by scarce solubility of the latter in THF.

ⁱ A. C. Stowe, W. J. Shaw, J. C. Linehan, B. Schmid, and T. Autrey, *Phys. Chem. Chem. Phys.*, 2007, 9, 1831.