Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2009

End-Selective Functionalization of Carbon Nanotubes. Use of DOE for the Optimization of a DNA Probe Attachment and Hybridization Using an Enzymatic Amplifying System

Maytal Piran, Vadim Kotlyar, Dana Dina Medina, Christophe Pirlot, Diana Goldman, and Jean-Paul Lellouche* (lellouj@mail.biu.ac.il)

Category Protocol N°	Total Binding (OD)	Non- Specific Binding (OD)	$\frac{\mathbf{EF}(\mathbf{n}^{\circ})^{a}}{1)^{a}}$	Pegylated MWCNTs _{ox} : Total Binding (OD)	Pegylated MWCNTs _{ox} : Non-Specific Binding (OD)	$\frac{\mathbf{EF}(\mathbf{n}^{\circ}}{2})^{b}$
8	2.22	1.06	1.1	1.04	0.03	32.8
7	2.11	1.30	0.6	1.20	0.03	48.0
3	2.82	1.25	1.3	0.51	0.05	9.5
5	2.53	1.25	1.0	1.09	0.04	27.5
1	2.68	1.43	0.9	1.25	0.03	37.0
2	2.92	1.24	1.4	1.18	0.03	36.9
6	1.44	1.19	0.2	1.04	0.03	33.0
4	1.80	1.28	0.4	1.04	0.03	33.0
Stand. 9	3.30	2.38	0.4	1.33	0.04	34.1

Electronic Supplementary Information (ESI)

Table ESI-1. OD and EF data for the 1^{st} randomly executed set of DOE experiments involving *non-pegylated* (*a*, $n^{\circ} 1$) and *pegylated* (*b*, $n^{\circ} 2$) oxidized MWCNTs_{ox}

Figure ESI-1a (One Factor Plot Graph). Optimal conditions for the oxidative opening of MWCNTs and sidewall PEG-mediated passivation from DOE experiments (influence of the molecular weight of the PEG polymer)

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2009

B : C o m p a n y

Figure ESI-2a (One Factor Plot Graph). Optimal conditions for the oxidative opening of MWCNTs and sidewall PEG-mediated passivation from DOE experiments (influence of the commercial source of MWCNTs/SWCNTs)

Figure ESI-2b. Influence of the commercial source of MWCNTs/SWCNTs (MER Corporation Ltd. and Nanocyl s.a.)

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2009

Figure ESI-3a (One Factor Plot Graph). Optimal conditions for the oxidative opening of MWCNTs and sidewall PEG-mediated passivation from DOE experiments (influence of the *multi-* or *single*-walled type of starting MWCNTs/SWCNTs)

Figure ESI-3b. Influence of the *multi*- or *single*-walled type of starting MWCNTs/SWCNTs

Figure ESI-4. Graphs 1-3: Sequence optimization and optimal conditions disclosed from a 1st set of DOE experiments using an HRP-amplifying DNA-based hybridization system

Scheme ESI-1. Quantification of accessible <u>end-</u> *versus* <u>sidewall</u>-localized COOH groups using the EDC-mediated covalent attachment of the fluorescent probe **DPEG-NH**₂