Electronic supplementary information (ESI)

Amorphous nano-structured silicas for high-performance carbon dioxide confinement

Shinichiro Ichikawa,^a Tsunetake Seki,[†]^a Mizuki Tada,^b Yasuhiro Iwasawa^b and Takao Ikariya^{*a}

^a Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan

^b Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

† Research Fellow of the Japan Society for the Promotion of Science

* To whom correspondence should be addressed. E-mail: tikariya@apc.titech.ac.jp

Contents

1.	Additional experimental section	S 3
	1.1. Raman spectroscopy	S 3
	1.2. Transmission electron microscopy (TEM)	S3
	1.3. N ₂ and Ar adsorption measurements	S 3
	1.4. References	S 3
2.	Figs. S1–S4	S4 and S5

1. Additional experimental section

1.1. Raman spectroscopy

Raman spectra of adsorbed CO₂ were measured using an NRS-2100 spectrometer (JASCO) with a 514.5-nm laser (laser power 5 mW, exposure time 900 s \times 2) and a resolution of 2 cm⁻¹. Indene under inert atmosphere or an artificial diamond^{S1} (Tokyo Progress System, Raman shift 1332 cm⁻¹) was used for the wavenumber calibration. The spectra of CO₂-condined adsorbents were recorded under ambient conditions, while the measurement of solid CO₂ was performed at -170 °C with a cooled cell (Linkam, model THMS600/LK-600PM/L-600A).

1.2. Transmission electron microscopy (TEM)

TEM measurements were performed on a JEM-2010F (JEOL) equipped with a field emission gun (operated at 200 kV). The S-400 and S-800 samples were pretreared at 400 °C for 3 h in a stream of dry air (dew point ca. -40 °C) prior to the measurements.

1.3. N₂ and Ar adsorption measurements

Surface areas and pore structures were characterized by measuring the N_2 and Ar adsorption–desorption isotherms using a BELSORP-mini (BEL Japan) for N_2 and an Autosorb-1-MPa analyzer (Quantachrome) for Ar, respectively. Before the measurements, the samples were treated at 400 °C for 3 h in a stream of dry air (dew point ca. –40 °C), and subsequently at 120 °C for 3 h under N_2 flow on the BELSORP-mini apparatus and 200 °C for 3 h under vacuum (<10⁻⁵ Pa) on the Quantachrome apparatus, respectively.

1.4. References

S1 S. A. Solin and A. K. Ramdas, *Phys. Rev. B*, 1970, 1, 1687.

Fig. S1 Comparison of the Raman spectra of adsorbed CO₂ between S-Kan and zeolite 13X. For experimental details, see "**Notes and references** section§" and "**Additional experimental section** in ESI". Indene under inert atmosphere was used for the wavenumber calibration.

Fig. S2 Saito–Foley pore-size distributions of S-400 and S-800.

Fig. S3 Pore-size distributions of S-400 and S-800 determined by the non-local density functional theory (NL-DFT).

Fig. S4 TEM images of S-400 (left) and S-800 (right). Note that the mean first-order-particle size was larger for S-800 than for S-400 due to the difference in calcination temperature that determines the extent of sintering.