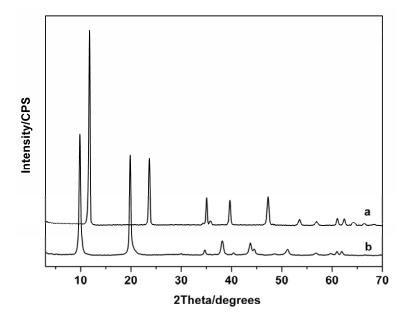
Electronic Supplementary Information for

Layer-by-layer assembly of layered double hydroxide/cobalt phthalocyanine ultrathin film and its application for sensors


Jingbin Han, Xiangyu Xu, Xiuying Rao, Min Wei,* David G. Evans and Xue Duan

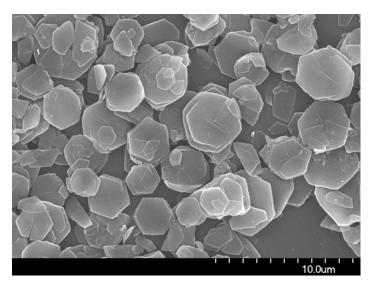
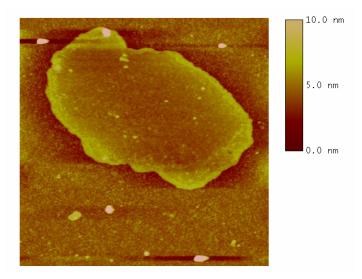
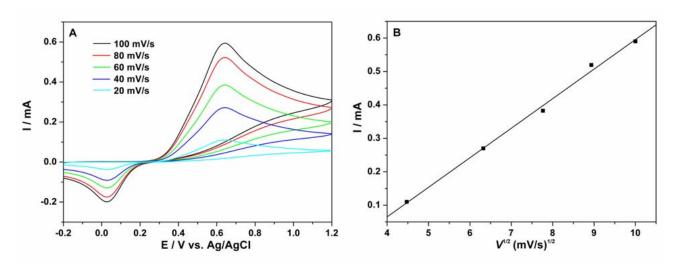
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

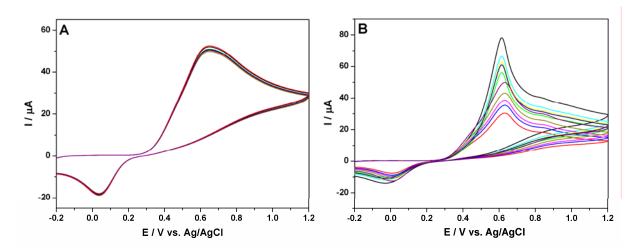
CORRESPONDING AUTHOR FOOTNOTE

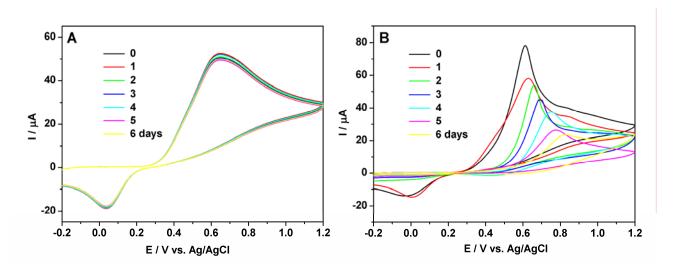
* Corresponding author. Phone: +86-10-64412131. Fax: +86-10-64425385. E-mail: weimin@mail.buct.edu.cn.

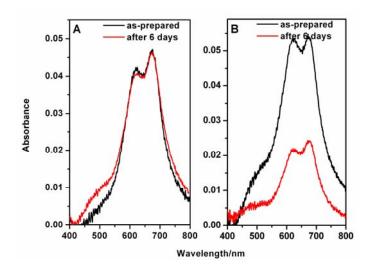
Figure S1 shows the XRD patterns of the MgAl-CO₃ and MgAl-NO₃ LDH samples, all of which can be indexed as a rhombohedral structure. The d_{003} basal spacing shifted from 7.58 Å (MgAl-CO₃ LDH) to 8.98 Å (MgAl-NO₃ LDH) after salt-acid treatment. No other crystalline phase was detected, indicating the high purity of the product. The results unambiguously indicate a complete replacement of interlayer CO_3^{2-} by NO_3^{-} . The SEM image of MgAl-NO₃ LDH (Figure S2) reveals mono-dispersive hexagonal crystals with a mean lateral dimension of $2\sim4~\mu m$. The AFM image (Figure S3) displays a thin layer of morphologically irregular LDH nanosheet with lateral size of $2\sim4~\mu m$, close to that of the MgAl-NO₃ LDH precursor. The average thickness of LDH nanosheets was ca. 0.8 nm, which was consistent with previous observations reported elsewhere.

Figure S1. Powder XRD patterns of the (a) MgAl-CO₃ and (b) MgAl-NO₃ LDH samples (from our previous work ref. 2).


Figure S2. SEM image of the MgAl-NO₃LDH precursor (from our previous work ref. 2).


Figure S3. Tapping-mode AFM image for the exfoliated MgAl-LDH nanosheets deposited on a Si wafer substrate (bar scale: 4.0×4.0 μm) (from our previous work ref. 2).


Figure S4. (A) Cyclic voltammograms of the (LDH/CoPcTs)₆ film in 0.1 mol/L PBS (pH 7.4) with the presence of 1×10^{-3} mol/L DA at various scan rates (20, 40, 60, 80, 100mV/s); (B) the linear relationship between the anodic peak current and the square root of scan rate.

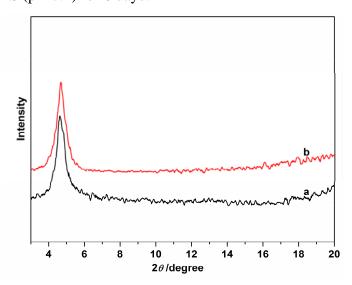

Figure S5. The measurement stability of (A) (LDH/CoPcTs)₄ and (B) (PDDA/CoPcTs)₄ modified electrode by recording cyclic voltammograms curves in 1.0×10^{-4} mol/L DA for 10 times (PBS 7.4, 100 mV/s).

Figure S6. The long-term stability of (A) (LDH/CoPcTs)₄ and (B) (PDDA/CoPcTs)₄ modified electrode by recording cyclic voltammograms curves in 1.0×10^{-4} mol/L DA for consecutive 6 days (PBS 7.4, 100 mV/s).

Figure S7. UV-vis absorption spectra of (A) (LDH/CoPcTs)₄ and (B) (PDDA/CoPcTs)₄ film before and after dipping into PBS (pH 7.4) for 6 days.

Figure S8. XRD patterns of (LDH/CoPcTs)₄ film before (a) and after dipping into PBS (pH 7.4) for 6 days (b).

References

- (a) Z. P. Liu, R. Z. Ma, Y. Ebina, N. Iyi, K. Takada and T. Sasaki, *Langmuir*, 2007, 23, 861; (b)
 Z. P. Liu, R. Z. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada and T. Sasaki, *J. Am. Chem. Soc.*,
 2006, 128, 4872; (c) L. Li, R. Z. Ma, Y. Ebina, K. Fukuda, K. Takada and T. Sasaki, *J. Am. Chem. Soc.*, 2007, 129, 8000.
- 2 J. Han, J. Lu, M. Wei, Z. L. Wang and X. Duan, Chem. Commun., 2008, 5188.