ZnAlF₅·[TAZ]: an Al fluorinated MOF of MIL-53(Al) topology with cationic $\{Zn(1,2,4 \text{ triazole})\}^{2+}$ linkers.

Amandine Cadiau, Charlotte Martineau, Marc Leblanc, Vincent Maisonneuve, Annie Hémon-Ribaud, Francis Taulelle, Karim Adil

Electronic Supplementary Information

Experimental.

1. Synthesis. $ZnAlF_5$ ·[TAZ] has been synthesized from a stoechiometric mixture of ZnO (Merk), Al(OH)₃ (Merk), 1,2,4 triazole (Aldrich), hydrofluoric acid solution (40% HF, Prolabo) and water. The hydrothermal reaction has been performed at 160°C in a microwave oven (CEM Mars) for 1 h and the obtained solid powder has been washed with water and dried at room temperature.

2. X-ray diffraction. The powder X-ray diffraction pattern of ZnAlF₅·[TAZ] has been recorded at room temperature under air in a Bragg-Brentano geometry with a PANalytical MPD-PRO diffractometer using a CuK_{α} radiation in the 4 – 99° 2 θ range and a 0.017° interpolated step.

3. NMR experiments. The ¹H, ¹³C ¹⁹F and ²⁷Al (respective Larmor frequencies of 500.1, 125.76, 470.6 and 130.3 MHz) MAS NMR spectra of ZnAlF₅·[TAZ] were collected on an Avance 500 Bruker spectrometer ($B_0 = 11.7$ T) using 2.5 or 3.2 mm CP-MAS probes. The ¹⁹F magic angle spinning (MAS) Hahn—echo spectrum of ZnAlF₅·[TAZ] was recorded at spinning frequency of 30 kHz, using 3.0 µs 90° pulses, an inter–pulse delay synchronized

with the rotor frequency and recycle delays of 20 s. The 2D ¹⁹F double-quantum singlequantum (DQ—SQ) MAS correlation spectrum was recorded at a 30 kHz spinning frequency using the variant of the back—to—back (BABA)ⁱ pulse sequence spanning on multiple of two rotor periods to excite and reconvert the double—quantum coherences. 3.0 µs 90° pulses and excitation-reconversion delays of 66.67 µs (corresponding to two rotor periods) were used. 50 rotor—synchronized t_1 increments were accumulated with 16 transients each. Phase sensitive detection in the indirect dimension was obtained using the States method.ⁱⁱ The ¹H MAS (25 kHz) Hahn—echo spectrum of ZnAlF₅·[TAZ] was recorded using 2.5 µs 90° pulses, an inter-pulse delay synchronized with the rotor frequency and recycle delays of 5 s. The 2D ¹H DQ—SQ MAS (25 kHz) NMR correlation spectrum of ZnAlF₅·[TAZ] was recorded using the BABA recoupling scheme using 2.5 µs 90° pulses and excitation—reconversion delays of 80 μ s. 32 rotor—synchronized t₁ increments were accumulated with 32 transients each. Phase sensitive detection in the indirect dimension was obtained using the States method. The ²⁷Al one pulse MAS (30 kHz) NMR spectrum was recorded using a 2.5 µs pulse length, 8192 transients and 1 s recycle delay. The ¹³C CP-MAS (8 kHz) NMR spectrum of ZnAlF₅·[TAZ] was recorded using a 2 ms contact time, a ¹H 64-step small-phase incremental alternation (SPINAL-64)ⁱⁱⁱ decoupling scheme (with an RF field corresponding to a 90 kHz nutation frequency) during the acquisition period and a 10 s recycle delay. The ¹H, ¹³C ¹⁹F and ²⁷Al chemical shifts were referenced to TMS, CFCl₃, and a 1 M solution of Al(NO₃)₃, respectively. All NMR spectra were reconstructed and drawn using the DMFIT software.^{iv}

4. *Ab initio* calculations. All calculations were conducted within the Kohn-Sham^v density functional theory (DFT) using the NMR CASTEP^{vi,vii} program in the Materials Studio 5.0 environment. For the structure optimization of ZnAlF₅·[TAZ], ultrasoft pseudopotentials were employed, with a plane-wave cut-off energy of 400 eV and a 2 x 2 x 2 Monkhorst-Pack^{viii} *k*-point sampling grid. During the structure optimization, the cell parameters were set to that of

ZnAlF₅·[TAZ] as determined by XRPD and were kept constant. The Perdew, Burke and Ernzerhof (PBE)^{ix} functionals were used in the generalized gradient approximation (GGA) for the exchange correlation energy. Magnetic properties were computed using the projector-augmented wave method (GIPAW)^x method. For the calculation of the ²⁷Al electric field gradient (EFG) tensor parameters, a 2 x 2 x 2 Monkhorst-Pack *k*-point grid was used to sample the Brillouin zone, with a plane-wave basis set expanded to kinetics energy lower than 500 eV. For the calculation of the ¹⁹F, ¹³C and ¹H shielding tensor components, a 2 x 2 x 3 Monkhorst-Pack *k*-point grid was used to sample the Brillouin zone, with a sample the sample the Brillouin zone, with a sample the sample the sample the sample the sample to sample the sample

Figure 1. Final profile refinement of $ZnAlF_5 \cdot [TAZ]$: observed (line), calculated (point), and difference (bottom) profiles of the XRPD pattern.

Figure 2. ¹³C CP-MAS NMR Spectrum of ZnAlF₅·[TAZ]. The spinning sidebands are marked by *.

Figure 3. XPRD *vs* NMR atomic fractional coordinates (AFC) and XPDR AFC *vs* AFC difference in ZnAlF₅·[TAZ].

	ZnAlF ₅ ·[TAZ]
Formula	ZnAlF ₅ C ₂ N ₃ H ₃
Formula weight	256.43
Crystal system	Orthorhombic
Space group	Imma
a (Å)	8.9288(1)
b (Å)	7.0989(1)
c (Å)	9.2593(1)
V (Å ³), Z	586.9(1), 4
Wavelength (Å)	1.54056
2θ range (°)	4-99
N. of independent reflections	379
N. intensity-dependent parameters	44
R_P, R_{wp}, R_B, R_F	0.077, 0.081, 0.031, 0.043

Table 1. Conditions of X-ray data collection and refinement parameters of ZnAlF₅·[TAZ].

Table 2. Fractional atomic coordinates of $ZnAlF_5$ ·[TAZ] obtained from Rietveld refinement and from DFT optimization (in italic).

	х	У	Z	Biso (Å ²)
Zn	1⁄4	1⁄4	1⁄4	2.47(2)
	1/4	1/4	1/4	
Al	0	0	0	2.22(9)
	0	0	0	
F(1)	0	1⁄4	0.9447(3)	2.07(9)
	0	1/4	0.9408	
F(2)	0.8587(2)	0.9539(2)	0.8685(2)	2.48(5)
	0.8579	0.9575	0.8671	
N(1)	0.5808(3)	1⁄4	0.0894(4)	2.08(9)
	0.5781	1/4	0.0918	
C(3)	0.3804(6)	1⁄4	0.9535(5)	3.6(2)
	0.3788	1/4	0.9549	
N(4)	0	1⁄4	0.6338(6)	2.7(4)
	0	1/4	0.6325	
H(1)	0.2803	1⁄4	0.9193	15(1)
	0.2644	1/4	0.9174	
H(2)	0	1⁄4	0.7289	15(1)
	0	1/4	0.7440	

File 1. Instructions and results files from the cell determination using the McMaille software.

```
McMaille input parameters:
! Wavelength, zeropoint, Ngrid
1.540598 0.0000 0
! Codes for symmetry
1 1 1 1 0 0
! W, Nind
0.200 0
!Pmin, Pmax, Vmin, Vmax, Rmin, Rmax, Rmaxref
 2. 20. 8. 1000. 0.05 0.15 0.50
! Ntests, Nruns
 -100 20
! 2-theta
          Intensity
            14523.27
  13.77965
  15.73154
               50162.91
  25.08183
               6186.574
  25.44973
              35930.96
               28938.02
  27.74953
  28.72030
               27508.07
  31.59583
               7021.501
  37.60630
               5260.167
  37.71967
              6538.038
             1066.698
  40.83050
  42.14981
               6763.961
  44.13326
              2758.817
  44.39032
               3665.281
  46.82245
               2581.186
  48.12358
               3087.138
  48.43833
               4143.285
  51.34167
              7156.181
  51.45929
               7268.446
              5335.458
  52.15933
              6552.193
  52.25543
  52.85062
               1946.799
              1955.880
  55.19131
  57.29116
               3398.314
  59.45080
               2872.215
  63.76271
               1557.828
  65.94198
               1963.232
_____
McMaille version 4.00 by A. Le Bail - 2006 - alb@cristal.org
 ------
 Using generic filename : camw28o2long-new
  Number of Processors :
                               1
 30-Mar-2010
             10 hour 12 min 11 Sec
 McMaille input parameters:
 Wavelength : 1.54060 Zeropoint : 0.0000
 Monte Carlo cell generation
 _____
 Width of the columnar profile shape, W =
                                       0.2000
 Max non-indexed reflections, NIND = 0
 Min/Max Rp, Rmaxref 5.0000001E-02 0.1500000
                                              0.5000000
 N of runs
                   20
                             100.000000000000
 N of MC events in cubic
 N of MC events in tetra/hexa2000.000000000N of MC events in orthorhombic40000.000000000
 N of MC events in monoclinic 800000.00000000
N of MC events in triclinic 16000000.0000000
 N of MC events in triclinic
    2-THETA d(A) lobs
                              W
```

13.780 15.732 25.082 25.450 27.750 28.720 31.596 37.606 37.606 37.720 40.831 42.150 44.133 44.390 46.822 48.124 48.438 51.342 51.459 52.159 52.255 52.851 55.191 57.291 59.451 63.763 65.942 dmax = 6 Be sure tha ensures th	6.4213 5.6287 3.5475 3.4971 3.2122 3.1058 2.8294 2.3830 2.2083 2.1422 2.0504 2.0391 1.9387 1.8893 1.8777 1.7782 1.7744 1.7522 1.7744 1.7522 1.7309 1.6629 1.6668 1.5535 1.4585 1.4154 .421270 t your che explora	14523.270 50162.910 6186.574 35930.961 28938.020 27508.070 7021.501 5260.167 6538.038 1066.698 6763.961 2758.817 3665.281 2581.186 3087.138 4143.285 7156.181 7268.446 5335.458 6552.193 1946.799 1955.880 3398.314 2872.215 1557.828 1963.232 poice of mathematical control of all and all and all all all all all all all all all al	0.200 0.	cameters lities.					
Dmin =	1.395433	3							
30-Mar-2010	10 ha	our 12 min	11 Sec						
	=========				=========	========		=====	
	RESUI	RESUI	RESUI	115 - RES	===========			=====	
============	EXPL(DRED CELL H	PARAMETERS	AND VOLU	MES: ========				
Cubic Monte Max a, V	Carlo sea 20.00000	arch :) 10(00.000		_				
Max(a,c), V	20.00	0000	20.00000	10 search 100	D.000				
Tetragonal M Max(a,c), V	onte Carl 20.00	lo search :)000	20.00000	100	0.000				
Orthorhombic Max(a,b,c),	Monte Ca V 20.	arlo search .00000	1 : 20.00000) 2	0.0000	1000	0.000		
FINAL LIST	 OF CELL	PROPOSALS	, sorted by	7 McM20 :					
Global The correc	list as (IN=numbe t cell ha	produced i er of index as some cha	in the .ckm ked lines) ances to be	n file e just bei	low				
IN F.o.M. lattice	Volume	V/V1	a	b	С	alpha	beta	gamma	Bravais
26 30.10 ***	586.283	1.00	7.0958	9.2595	8.9231	90.000	90.000	90.000	P Ortho
============								=====	

FINAL LIST OF CELL PROPOSALS, sorted by F(20) :

Global list (IN=number of indexed lines) The correct cell has some chances to be just below b c IN F(20) Volume V/V1 alpha beta gamma Bravais a lattice 7.0958 9.2595 8.9231 90.000 90.000 90.000 P Ortho 26 48.74 586.283 1.00 * * * _____ FINAL LIST OF CELL PROPOSALS, sorted by M(20) : _____ Global list (IN=number of indexed lines) The correct cell has some chances to be just below Volume V/V1 IN M(20) а b c alpha beta gamma Bravais lattice 26 40.40 586.283 1.00 7.0958 9.2595 8.9231 90.000 90.000 P Ortho * * * _____ See for the highest F.o.M. above the cell(s) with highest symmetry, if any (Cubic, hexagonal, etc), they could correspond to the the right solution Cells sorted by symmetry Vol Vol/Vl Ind Nsol a b c alpha beta gamma Rp Orthorhombic cells 0.073 586.283 1.00 26 1 7.0958 9.2595 8.9231 90.000 90.000 90.000 "Best" cell with largest McM20 : _____ PROGRAM *** CELREF *** (J.LAUGIER & A.FILHOL 10/78) OBSERVABLE NUMBER : ITERATION NUMBER : 10 25 REFINEMENT CONSTRAINTS : NO INITIAL VALUES :
 INITIAL
 Constraint
 Constraint VOLUME (A**3) : 586.283 NUMBER OF INDEPENDENT PARAMETERS : 4 FINAL VALUES : (STANDARD DEVIATIONS : 2nd LINE) A С ALPHA ZERO LAMBDA В BETA GAMMA
 LANDDA
 A
 D
 C
 Alerna
 DETA
 GAMMA

 1.5406
 7.1003
 9.2619
 8.9283
 90.000
 90.000
 90.000

 0.0000
 0.0008
 0.0009
 0.0010
 0.0000
 0.0000
 0.0000

 L CELL :
 0.14084
 0.10797
 0.11200
 90.000
 90.000
 90.000
 -0.016 0.004 RECIPROCAL CELL : VOLUME (A**3) : 587.146 L TH(OBS) TH-ZERO TH(CALC) DIFF. Н K 13.780 13.764 13.765 0 1 1 -0.001 0 15.732 15.716 15.714 0.002 1 1 0 25.082 2 25.450 25.066 25.434 25.063 25.434 0.003 2 0 1 1 0.000 27.73427.73428.70528.70331.58031.575 0.000 0 2 2 27.750 28.720 2 1 1 0.002 20.720 0 31.596 0.005 1 3 3 2 37.606 37.591 2 37.720 37.704 3 42.150 42.134 37.589 37.725 42.140 0.002 1 2 2 -0.021 -0.006 0 3 1 3 3 44.133 44.118 44.113 0.005

```
2 44.390 44.375 44.376 -0.002
0 46.822 46.807 46.804 0.003
4 48.124 48.108 48.114 -0.006
    3
          1
    2
           4
    2
          0
                0
                                    48.423
51.326
                                                             0.001
0.005
    3
          3
                       48.438
                                                 48.422
    2
           4
                 2
                       51.342
                                                 51.321
                0 51.459 51.444
                                                51.437
    4
          0
                                                              0.006
                4
4
                                  52.144
52.240
    1
           3
                       52.159
                                                 52.138
                                                               0.006
                                                52.243
                      52.255
                                                             -0.003
    2
          2

      4
      52.240
      52.240
      52.243
      -0.003

      5
      52.851
      52.835
      52.823
      0.012

      2
      55.191
      55.176
      0.000

      4
      57.291
      57.276
      57.285
      -0.009

      2
      59.451
      59.435
      59.437
      -0.002

      2
      63.763
      63.747
      63.741
      0.006

      0
      65.942
      65.926
      65.932
      -0.006

    1
          0
    1
          5
    0
          4
          2
6
    4
    0
    2
          6
   M(20) =
                40.40
   F(20) = 48.74 (0.0045, 91)
  Final Rp on the .prf = 6.8966284E-02
 _____
          THE SELECTION OF THE "BEST" CELL
 based on McM20, Rp, F(20), M(20), V, high symmetry ?
             DEPENDS ON YOU, EXCLUSIVELY.
                        However...
  It is suggested that the correct cell could be :
 _____
IN F.O.M.
                Volume
                                                  b
                                                             С
                                                                      alpha beta gamma Bravais
                                       а
lattice
26 30.10 586.283
                                      7.0958 9.2595 8.9231 90.000 90.000 90.000 P Ortho
* * *
    Found
                       3 time(s) head of the best lists
 _____
```

Files 2. Instructions and results files from the cell determination using the ESPOIR software.

```
! title
ZnAlF5triaz
   a, b, c, alpha, beta
8.9288 7.0989 9.2592 90.000
           b,
                                  beta, gamm.
.000 90.000
                                            gamma
!
                                                    90.000
! space group
ТММА
! lambda, radiation, N of atoms, types of atoms, N of objects, "|Fobs|" or patterns, iprint
1.54056 4 13 5 3 1 1
0.040027 -0.016779
                      0.013392 5
! atom names, in 8A4
Zn Al F C N
! code for minimal distance contraints
 0
! maximum moves for each type of atom
  3.500 3.500 3.500 3.500 3.500
! annealing law, sigma, reject 2.0000 1.0000 0.0010
! number of events for : print, maximum, save
20000 200000 100000
! events for restart, rmax, ichi, number of runs
 40000 0.200 2 10
! object type and NPERM for object 1
  1 0
! number of atoms of each type in object
                                           1
  1 0 0 0 0
! B overall, NOCC, NSPE for object 1
1.0 0 0
! object type and NPERM for object 2
  2 4
! number of atoms of each type in object
                                            2
  0 1 6 0 0
```

```
! B overall, NOCC, NSPE for object 2
1.0 0 0
! cell parameters, and x, y, z, occup. for object 2
10 10 10 90 90 90
0 0 0 1
0.18 0 0 1
-0.18 0 0 1
0 0.18 0 1
0 -0.18 0 1
0 0 0.18 1
0 0 -0.18 1
! object type and NPERM for object 3
  2 4
! number of atoms of each type in object 3
  0 0 0 2 3
! B overall, NOCC, NSPE for object 3
3.0 0 0
! cell parameters, and x, y, z, occup. for object 3
9.2710 10.6220 3.7330 90.0000 94.9600 90.0000
0.76300 0.23310 0.57670 1
 0.77070 0.11450 0.42790 1
 0.53910 0.18040 0.40940 1
 0.63460 0.08910 0.33080
                      1
 0.62450 0.27030 0.56490 1
 -----
 ESPOIR VERSION 3.50 by A. Le Bail - 2000 -alb@cristal.org
 _____
 Using generic filename : camw280
 29-Mar-2010 18 hour 7 min 18 Sec
Cell parameters : 8.9288 7.0989 9.2592 90.000 90.000 90.000
 Reciprocal cell parameters : 0.1120 0.1409 0.1080 90.000 90.000
                                                                       90.000
 SPACE GROUP : I M M A
 BURZLAFF Crystal system : 2 Orthorhombic
 Wavelength : 1.54056
 X-ray data
 The fit will be on the pseudo powder pattern
   with U, V, W, STEPN = 0.0400 -0.0168 0.0134 5.0000
 The model contains 3 objects
 Overall thermal parameter B = 1.00 for object 1
 Overall thermal parameter B = 1.00 for object 2
 Starting rigid model cell parameters :
                   10.0000 10.0000 10.0000 90.000 90.000
                                                              90.000
 Reciprocal cell parameters : 0.1000 0.1000 0.1000
                                                     90.000
                                                              90.000
                                                                       90.000
 Starting coordinates x,y,z and occupation numbers
                    0.0000
                           0.0000 0.0000
                                             1.00
                                  0.0000
                    0.1800
                           0.0000
                                              1.00
                                             1.00
                           0.0000
                   -0.1800
                                            1.00
1.00
1.00
                    0.0000 0.1800 0.0000
                    0.0000 -0.1800 0.0000
0.0000 0.0000 0.1800
                    0.0000 0.0000 -0.1800
                                             1.00
```

Overall thermal parameter B = 3.00 for object 3

Starting rigid model cell parameters : 9.2710 10.6220 3.7330 90.000 94.960 90.000

Reciprocal cell parameters : 0.1083 0.0941 0.2689 90.000 85.040 90.000

Starting coordinates x, y, z and occupation numbers

0.7630	0.2331	0.5767	1.00
0.7707	0.1145	0.4279	1.00
0.5391	0.1804	0.4094	1.00
0.6346	0.0891	0.3308	1.00
0.6245	0.2703	0.5649	1.00

THE STRUCT. IS CENTRIC,

					AND	THE EQU	UIV. P	os.	ARE:				
				RO	TATION MA	TRIX			TRA	ANSLATIO	N VECTOR		
POS.	1	1.0	0.0	0.0	0.0 1.0	0.0	0.0	0.0	1.0	0.0000	0.0000	0.0000	
POS.	2	1.0	0.0	0.0	0.0 -1.0	0.0	0.0	0.0	-1.0	0.5000	0.5000	0.5000	
POS.	3	-1.0	0.0	0.0	0.0 1.0	0.0	0.0	0.0	-1.0	0.5000	0.0000	0.5000	
POS.	4	-1.0	0.0	0.0	0.0 -1.0	0.0	0.0	0.0	1.0	0.0000	0.5000	0.0000	
Tot	al nu	mber o	f sym	netry	operator	s =		10	5				
F	ull l	ist of	symme	etry	operators	:							
				RO	TATION MA	TRIX			TRA	ANSLATIO	N VECTOR	_	
POS.	1	1.0	0.0	0.0	0.0 1.0	0.0	0.0	0.0	1.0	0.0000	0.0000	0.0000	
POS.	2	1.0	0.0	0.0	0.0 -1.0	0.0	0.0	0.0	-1.0	0.5000	0.5000	0.5000	
POS.	3	-1.0	0.0	0.0	0.0 1.0	0.0	0.0	0.0	-1.0	0.5000	0.0000	0.5000	
POS.	4	-1.0	0.0	0.0	0.0 -1.0	0.0	0.0	0.0	1.0	0.0000	0.5000	0.0000	
POS.	5	1.0	0.0	0.0	0.0 1.0	0.0	0.0	0.0	1.0	0.5000	0.5000	0.5000	
POS.	6	1.0	0.0	0.0	0.0 -1.0	0.0	0.0	0.0	-1.0	1.0000	1.0000	1.0000	
POS.	7	-1.0	0.0	0.0	0.0 1.0	0.0	0.0	0.0	-1.0	1.0000	0.5000	1.0000	
POS.	8	-1.0	0.0	0.0	0.0 -1.0	0.0	0.0	0.0	1.0	0.5000	1.0000	0.5000	
POS.	9	-1.0	0.0	0.0	0.0 -1.0	0.0	0.0	0.0	-1.0	0.0000	0.0000	0.0000	
POS.	10	-1.0	0.0	0.0	0.0 1.0	0.0	0.0	0.0	1.0	0.5000	0.5000	0.5000	
POS.	11	1.0	0.0	0.0	0.0 -1.0	0.0	0.0	0.0	1.0	0.5000	0.0000	0.5000	
POS.	12	1.0	0.0	0.0	0.0 1.0	0.0	0.0	0.0	-1.0	0.0000	0.5000	0.0000	
POS.	13	-1.0	0.0	0.0	0.0 -1.0	0.0	0.0	0.0	-1.0	0.5000	0.5000	0.5000	
POS.	14	-1.0	0.0	0.0	0.0 1.0	0.0	0.0	0.0	1.0	1.0000	1.0000	1.0000	
POS.	15	1.0	0.0	0.0	0.0 -1.0	0.0	0.0	0.0	1.0	1.0000	0.5000	1.0000	
POS.	16	1.0	0.0	0.0	0.0 1.0	0.0	0.0	0.0	-1.0	0.5000	1.0000	0.5000	
Titl	e of	run :											
Over	all s	tandar	d dev:	iatio	n is 1.0	000							
Acce	pt a	move e	ven i:	E –	0.001000	> DELTA	AR>	0.					
								~					
Maxi	mum c	hange	in ang	7 COO	rdinate i	s 3	.500A	tor	partic	cles of	type 1		
Maxi	mum c	hange	in ang	7 COO	rdinate i	s 3	.500A	tor	partic	cles of	type 2		
Maxi	mum c	nange	in an	7 COO	rdinate i	S 3	.500A	for	partic	cles of	type 3		
Maxi	mum c	nange	in an	7 COO	rdinate i	s 3	.500A	for	partic	cles of	type 4		
Maxi	mum c	nange	in ang	Y COO	rdinate i	s 3	.500A	Ior	partic	cles of	type 5		
Move	ampl	itudes	will	be p	rogressiv	ely red	duced	by N	MOVE=MO	OVE*(1	NGEN/max	NGEN)**an	neal
			W	ith a	nneal =	2.00							
T-T				_	20000								
Writ	ing s	ummary	ever	Z	20000 g	enerate	ea mov	es		100000 0			
Prog	ramme	WILL	run I	or	200000.0	moves a	savıng	eve	ery .	100000.0	moves		
Rest	art a	fter	40000	even	ts IF the	R fact	tor is	sti	ill hig	gher tha	n 0.200		
Number of different starting configurations to test : 10													
Conf	iauro	tion a	ontai	20	12 atoma	of E	timog						
COIII	Iguia		Oncan	.15	IS ALOUIS	OL D I	cypes						
REAL	AND	IM. X-	RAY S	CATTE	R. FACT.								
zn	14.0	7430	3.265	50 7	.03180 0	.23330	5.16	520	10.310	530 2.4	1000 58.	70970	
	1.3	0410 -	1.612	0 0	.67800								
al	6.4	2020	3.038	70 1	.90020 0	.74260	1.59	360	31.54	720 1.9	6460 85.	08860	
c	1.1	1510	0.204	-0 0	.24600	00440	1		0.000	1	0420 00	1 40 60	
I	3.5	3920 1	0.282	502	.64120 4	.29440	1.51	/00	0.261	150 1.0	2430 26.	14760	
~	0.2	1000 0	0.069	10 U	.05300	20750	1 50	060	0 5 6 7		6500 51	65100	
C	2.3	1560	0.043	⊥ טי ^ חר	.UZUUU 10	.20/50	1.58	000	0.568	5/0 0.8	0000 51.	UDIZU	
n	12 2	1260	0.01/	ט ט ר חק	13220 A	80230	2 01	250	28 007	750 1 1	6630 0	58260	
11	14.4		0.005	10 3	y	.02330	∠.∪⊥	200	20.22	' 70 T'T	0000 0.	10200	

-11.52900	0.02900	0.01800
	0.02/00	0.02000

Object	1	can	be	translated	by	3.500
Object	2	can	be	translated	by	3.500
Object	3	can	be	translated	by	3.500

```
Test number : 1
29-Mar-2010 18 hour 7 min 18 Sec
 ISEED = 589470981
Starting coordinates x,y,z and occupation numbers
      0.50668 0.10407 0.19500
Znl
                                         1.000
Starting coordinates x,y,z and occupation numbers
                            0.00000
0.00000
       0.00000
                  0.00000
A11
                                         1.000
                                        1.000
                  0.00000
       0.20159
F1
F2
      -0.20159
                 0.00000
                           0.00000
                                        1.000
                                        1.000
                           0.00000
0.00000
F3
       0.00000
                  0.25356
       0.00000
                -0.25356
F4
                 0.00000
                           0.19440
                                        1.000
F5
       0.00000
F6
       0.00000
                  0.00000
```

Molecule connectivity, up to 1.8 Angstrom A1 A2 Distance

Total number of non-H bonds in object 2: 0

Terminal bonds : Bond number A1 A2

No terminal bond found

Ring analysis (the same ring may appear several times)

No ring found

Rotatable bonds : No A1 A2

```
No rotatable bond found
```

The following 0 groups of atoms can rotate, if you wish (see the manual at the nobt parameter)

End of molecule connectivity analysis

Starting coordinates x,y,z and occupation numbers

C1	0.77140	0.34878	0.23164	1.000
C2	0.78477	0.17132	0.17187	1.000
Nl	0.54496	0.26993	0.16444	1.000
N2	0.64696	0.13332	0.13287	1.000
N3	0.62801	0.40445	0.22690	1.000

Molecule connectivity, up to 1.8 Angstrom Al A2 Distance C1 C2 1.38113 C1 N3 1.34054 C1 C2 1.38113 1.31041 C2 N2 N1 N2 1.36213 N1 N3 1.34023 N2 C2 1.31041 1.36213 1.34054 N2 N1 NЗ C1 N3 N1 1.34023 Total number of non-H bonds in object 3 : 5 Terminal bonds : Bond number Al A2 No terminal bond found Ring analysis (the same ring may appear several times)

 5 atoms ring:
 1
 2
 4
 3
 5
 C1
 C2
 N2
 N1

 5 atoms ring:
 1
 5
 3
 4
 2
 C1
 N3
 N1
 N2

 5 atoms ring:
 2
 4
 3
 5
 1
 C2
 N2
 N1
 N3

 N3 C2 C1 5 atoms ring : 5 atoms ring : 3 4 2 1 5 N1 3 5 1 2 4 N1 C2 C1 C1 N2 N3 N3 C2 N2 Rotatable bonds : No A1 A2 No rotatable bond found The following 0 groups of atoms can rotate, if you wish (see the manual at the nobt parameter) End of molecule connectivity analysis Starting R value = 0.788 Test number : 9 29-Mar-2010 18 hour 9 min 14 Sec ISEED = 792486605 Starting coordinates x,y,z and occupation numbers Zn1 0.27802 0.78393 0.97998 1.000 Al1 0.00000 0.00000 0.00000 1.000 0.00000 1.000 1.000 F1 0.20159 0.00000 0.00000 -0.20159 F2 0.00000 0.25356 0.00000 0.00000 1.000 1.000 F٦ F4 0.00000 -0.25356 F5 0.00000 0.00000 0.19440 1.000 Fб 0.00000 0.00000 -0.19440 1.000 1.000 0.77140 0.34878 0.23164 C1C2 0.78477 0.17132 0.17187 1.000 N1 0.54496 0.26993 0.16444 1.000 N2 0.64696 0.13332 0.13287 1.000 N3 0.62801 0.40445 0.22690 1.000 Object number 1 at test 9. Previous minimum R=0.159 at test 1 0 moves acc. 0 tested; Chi**2=0.812 , R=0.812 0 tested 0 perm. acc. 0 events did not improve the fit, DAMP = 1.000000Object number 2 at test 9. Previous minimum R=0.159 at test 1 $\,$ 0 rot. acc. 0 gen. and 0 trans. acc. 0 tested 0 tested; Chi**2=0.812 , R=0.812

0 events did not improve the fit, DAMP = 1.000000 Object number 3 at test 9. Previous minimum R=0.159 at test 1 0 rot. acc. 0 gen. and 0 trans. acc. 0 tested 0 tested; Chi**2=0.812 , R=0.812 0 events did not improve the fit, DAMP = 1.000000 Object number 1 at test 9. Previous minimum R=0.159 at test 1 7 moves acc. 20362 tested; Chi**2=0.210 , R=0.210 0 perm. acc. 0 tested 1 events did not improve the fit, DAMP = 0.482427 Object number 2 at test 9. Previous minimum R=0.159 at test 1 $\,$ 12 rot. acc. 15185 gen. and 15185 tested; Chi**2=0.210 , R=0.210 0 trans. acc. 5061 tested 0 events did not improve the fit, DAMP = 0.484848 Object number 3 at test 9. Previous minimum R=0.159 at test 1 13 rot. acc. 15236 gen. and 15236 tested; Chi**2=0.210 , R=0.210 3 trans. acc. 5078 tested 0 events did not improve the fit, DAMP = 0.483428 Object number 1 at test 9. Previous minimum R=0.159 at test 1 7 moves acc. 32081 tested; Chi**2=0.200 , R=0.200 0 perm. acc. 0 tested 1 events did not improve the fit, DAMP = 0.269138 Object number 2 at test 9. Previous minimum R=0.159 at test 1 13 rot. acc. 23973 gen. and 23973 tested; Chi**2=0.200 , R=0.200 0 trans. acc. 7990 tested 0 events did not improve the fit, DAMP = 0.270977Object number 3 at test 9. Previous minimum R=0.159 at test 1

 13 rot. acc.
 24163 gen. and
 24163 tested; Chi**2=0.200
 , R=0.200

 3 trans. acc.
 8054 tested

 0 events did not improve the fit, DAMP = 0.267041 Object number 1 at test 9. Previous minimum R=0.159 at test 1 $\,$ 7 moves acc. 40841 tested; Chi**2=0.196 0 perm. acc. 0 tested , R=0.196 0 perm. acc. 1 events did not improve the fit, DAMP = 0.150067 Object number 2 at test 9. Previous minimum R=0.159 at test 1 13 rot. acc. 30718 gen. and 30718 tested; Chi**2=0.196 , R=0.196 0 trans. acc. 10239 tested 0 events did not improve the fit, DAMP = 0.148734Object number 3 at test 9. Previous minimum R=0.159 at test 1 14 rot. acc. 30911 gen. and 30911 tested; Chi**2=0.196 , R=0.196 4 trans. acc. 10303 tested 0 events did not improve the fit, DAMP = 0.145764Object number 1 at test 9. Previous minimum R=0.159 at test 1 7 moves acc. 40873 tested; Chi**2=0.195 , R=0.195 0 perm. acc. 0 tested 1 events did not improve the fit, DAMP = 0.149695 Object number 2 at test 9. Previous minimum R=0.159 at test 1 13 rot. acc. 30748 gen. and 30748 tested; Chi**2=0.195 , R=0.195 1 trans. acc. 10249 tested 0 events did not improve the fit, DAMP = 0.148271Object number 3 at test 9. Previous minimum R=0.159 at test 1 14 rot. acc. 30945 gen. and 30945 tested; Chi**2=0.195 , R=0.195 4 trans. acc. 10314 tested 0 events did not improve the fit, DAMP = 0.145249 Object number 1 at test 9. Previous minimum R=0.159 at test 1 8 moves acc. 54958 tested; Chi**2=0.175 $\,$, R=0.175 $\,$ 0 perm. acc. 0 tested 1 events did not improve the fit, DAMP = 0.030846 Object number 2 at test 9. Previous minimum R=0.159 at test 1 13 rot. acc. 41298 gen. and 41298 tested; Chi**2=0.175 , R=0.175 2 trans. acc. 13765 tested 0 events did not improve the fit, DAMP = 0.030295Object number 3 at test 9. Previous minimum R=0.159 at test 1 15 rot. acc. 41593 gen. and 41593 tested; Chi**2=0.175 , R=0.175 6 trans. acc. 13864 tested 0 events did not improve the fit, DAMP = 0.028278 Object number 1 at test 9. Previous minimum R=0.158 at test 9 13 moves acc. 62648 tested; Chi**2=0.158 , R=0.158 0 perm. acc. 0 tested 1 events did not improve the fit, DAMP = 0.009997 Object number 2 at test 9. Previous minimum R=0.158 at test 9 15 rot. acc. 47230 gen. and 47230 tested; Chi**2=0.158 , R=0.158

```
9 trans. acc. 15743 tested
      0 events did not improve the fit, DAMP = 0.009994
 Object number 3 at test 9. Previous minimum R=0.158 at test 9
    16 rot. acc. 47359 gen. and 47359 tested; Chi**2=0.158 , R=0.158 11 trans. acc. 15786 tested
     1 events did not improve the fit, DAMP = 0.009994
 Object number 1 at test 9. Previous minimum R=0.158 at test 9
     13 moves acc. 64299 tested; Chi**2=0.158 , R=0.158
      0 perm. acc.
                        0 tested
     1 events did not improve the fit, DAMP = 0.009997
 Object number 2 at test 9. Previous minimum R=0.158 at test 9
     15 rot. acc. 48529 gen. and 48529 tested; Chi**2=0.158 , R=0.158
      9 trans. acc. 16176 tested
      0 events did not improve the fit, DAMP = 0.009994
 Object number 3 at test 9. Previous minimum R=0.158 at test 9 \,
    16 rot. acc. 48577 gen. and 48577 tested; Chi**2=0.158 , R=0.158 12 trans. acc. 16192 tested
     1 events did not improve the fit, DAMP = 0.009994
 Object number 1 at test 9. Previous minimum R=0.158 at test 9
    13 moves acc. 66395 tested; Chi**2=0.195 , R=0.158 0 perm. acc. 0 tested
     1 events did not improve the fit, DAMP = 0.009997
 Object number 2 at test 9. Previous minimum R=0.158 at test 9
    15 rot. acc. 50079 gen. and 50079 tested; Chi**2=0.195 , R=0.158
      9 trans. acc. 16692 tested
      0 events did not improve the fit, DAMP = 0.009994
 Object number 3 at test 9. Previous minimum R=0.158 at test 9
16 rot. acc. 50125 gen. and 50125 tested; Chi**2=0.195 , R=0.158
12 trans. acc. 16708 tested
     1 events did not improve the fit, DAMP = 0.009994
Final coordinates x,y,z and occupation numbers
      0 24855 0 27173
7n1
                             0 75015
                                           1 000
```

Zni	0.24855	0.2/1/3	0./5015	1.000
Al1	0.00245	0.02667	0.98425	1.000
F1	0.04112	0.26667	1.03468	1.000
F2	-0.03623	-0.21333	0.93382	1.000
F3	0.15353	-0.05243	1.09777	1.000
F4	-0.14864	0.10577	0.87073	1.000
F5	0.13019	0.04756	0.83471	1.000
Fб	-0.12529	0.00578	1.13379	1.000
C1	0.40110	0.27150	0.07666	1.000
C2	0.40308	0.26583	-0.07242	1.000
N1	0.63573	0.22757	0.01732	1.000
N2	0.54511	0.23762	-0.10077	1.000
N3	0.54043	0.24951	0.12788	1.000
29-M	ar-2010	18 hour 9	min 36 Sec	

End of this test

Test number : 10 29-Mar-2010 18 hour 9 min 36 Sec ISEED = 871129947 Starting coordinates x,y,z and occupation numbers 0.57480 1.000 Zn1 0.97147 0.38258 0.00000 0.00000 0.00000 Al1 1.000 0.00000 0.20159 0.00000 1.000 F1 0.00000 0.00000 1.000 1.000 -0.20159F2 FЗ 0.00000 0.25356 0.00000 1.000 -0.25356 0.00000 F4 0.00000 0.00000 0.00000 0.00000 1.000 F5 0.19440 -0.19440 Fб 0.23164 0.77140 0.34878 0.17132 1.000 1.000 1.000 C1C2 0.78477 0.17187 N1 0.54496 0.26993 0.16444 N2 0.64696 0.13332 0.13287 1.000

```
N3
     0.62801 0.40445 0.22690 1.000
  Object number 1 at test 10. Previous minimum R=0.158 at test 9
     0 moves acc. 0 tested; Chi**2=0.796 , R=0.796
                       0 tested
      0 perm. acc.
      0 events did not improve the fit, DAMP = 1.000000
  Object number 2 at test 10. Previous minimum R=0.158 at test 9
                                     0 tested; Chi**2=0.796 , R=0.796
      0 rot. acc.
                      0 gen. and
      0 trans. acc.
                       0 tested
      0 events did not improve the fit, DAMP = 1.000000
  Object number 3 at test 10. Previous minimum R=0.158 at test 9
                   0 gen. and
0 tested
      0 rot. acc.
                                      0 tested; Chi**2=0.796 , R=0.796
      0 trans. acc.
      0 events did not improve the fit, DAMP = 1.000000
  Object number 1 at test 10. Previous minimum R=0.158 at test 9
     4 moves acc. 35445 tested; Chi**2=0.245 , R=0.245
0 perm. acc. 0 tested
      0 events did not improve the fit, DAMP = 0.219328
  Object number 2 at test 10. Previous minimum R=0.158 at test 9 \,
      9 rot. acc. 26806 gen. and 26806 tested; Chi**2=0.245 , R=0.245
      0 trans. acc. 8935 tested
      0 events did not improve the fit, DAMP = 0.215203
  Object number 3 at test 10. Previous minimum R=0.158 at test 9
     4 rot. acc. 26911 gen. and 26911 tested; Chi**2=0.245 , R=0.245
1 trans. acc. 8969 tested
      0 events did not improve the fit, DAMP = 0.213259
Final coordinates x,y,z and occupation numbers
Zn1
       0.24353
                  0.77392
                            0.75674
                                         1.000
                0.00000
                           0.00000
Al1
      0.00000
                                        1.000
                                        1.000
1.000
F1
       -0.04884
                 0.22568
                           -0.07506
                           0.07506
F2
      0.04884
                 -0.22568
                                        1.000
F٦
       0.12572
                 0.11353
                           0.12457
F4
      -0.12572
                 -0.11353
                            -0.12457
                                         1.000
F5
      0.14983
                -0.02170
                           -0.12899
                                        1.000
                           0.12899
                                        1.000
                 0.02170
Fб
      -0.14983
                0.60816
C1
       0.53070
                            0.85278
                           0.85605
                                        1.000
C2
       0.38247
                 0.55272
N1
       0.41705
                  0.81353
                            0.99078
                                         1.000
                            0.93845
N2
       0.32081
                 0.68121
                                        1.000
       0.54910
                 0.76271
                            0.93405
                                        1.000
N3
 29-Mar-2010
                18 hour 9 min 49 Sec
             Fcalc
                       Fobs
                               d(A)
                                     2-theta FWHM
  h
     k l
         1 76.236 47.959 6.427 13.766 0.109
1 98.309 103.747 5.634 15.717 0.109
   1
      Ω
   0
      1
          2 30.992 13.251
                            4.630 19.155 0.108
   0
       0
                                     19.871
          0 23.091
                     4.642
                              4.464
   2
      0
                                             0.108
              6.358 10.147
                              3.557
                                     25.014
   1
      1
          2
                                             0.108
   Λ
      2
          0 109.194 83.499
                             3.549
                                     25.067 0.108
          1 109.940 110.114
   2
      1
                              3.499
                                     25.435
                                             0.108
                            3.214
          2 164.497 153.918
                                     27.737 0.108
   2
      0
                            3.107
          1 76.547 112.776
3 16.324 22.933
                                     28.707
                                             0.108
   1
      2
   1
      0
                              2.917
                                     30.622
                                             0.109
      0
          1 14.308 19.626 2.833
                                     31.549
   3
                                             0.109
   0
      1
          3 102.432 84.601
                              2.830
                                     31.583
                                             0.109
                            2.817
                                     31.740
   0
      2
          2 32.838 53.741
                                             0.109
                            2.778
          0 25.997 40.714
                                     32.192
   2
      2
                                             0.109
   2
      1
          3 46.030 61.833
                              2.390
                                     37.595
                                             0.111
                                     37.730
   2
      2
          2 82.329 63.550 2.382
                                             0.111
   3
      1
          2 44.192 32.510
                              2.361
                                     38.082
                                             0.111
                            2.315
          4 25.652
                                     38 873
   Ο
      0
                     0.000
                                             0.112
                                     39.265
   0
      3
          1 14.679
                     8.242 2.293
                                             0.112
                                     39.973
   1
       2
          3
             27.828 21.216
                              2.254
                                             0.112
          0 36.594 26.315
                            2.232 40.373
   4
      0
                                             0.112
                            2.214
                                    40.711
          1 36.003 35.907
   3
      2
                                             0.113
   3
      0
          3 116.874 117.741
                              2.142
                                    42.144
                                             0.113
                            2.137
          4 40.449 26.173
                                    42.260
   1
      1
                                             0.114
          1 49.901 34.962 2.075 43.576
4 44.492 39.829 2.055 44.028
   4
      1
                                             0.114
   2
                                             0.115
      0
         2 48.471 51.161
1 70.173 67.525
                            2.051 44.125
2.039 44.382
   1
      3
                                             0.115
   2
      3
                                             0.115
         2 34.870 40.549 2.011 45.051 0.115
   4
      0
   0
      2
         4 82.091 79.764 1.939 46.816 0.117
```

4	2	0	97.601	98.595	1.890	48.114	0.118
0	3	3	118.509	110.122	1.878	48.433	0.118
3	2	3	24.636	42.499	1.834	49.664	0.119
1	0	5	25.889	24.523	1.813	50.277	0.120
0	1	5	26.964	27.328	1.792	50.919	0.120
2	2	4	103.648	112.064	1.778	51.332	0.121
0	4	0	160.686	174.812	1.775	51.447	0.121
3	1	4	28.623	28.903	1.770	51.609	0.121
5	0	1	40.953	62.200	1.753	52.118	0.121
4	1	3	85.856	88.711	1.753	52.141	0.122
4	2	2	94.297	94.890	1.749	52.245	0.122
2	3	3	46.067	58.181	1.731	52.846	0.122
3	3	2	20.377	35.405	1.720	53.220	0.123
1	4	1	24.111	23.091	1.711	53.522	0.123
2	1	5	77.465	60.318	1.663	55.189	0.125
0	4	2	1.639	3.390	1.657	55.398	0.125
2	4	0	9.898	10.987	1.649	55.688	0.125
1	3	4	29.282	15.539	1.627	56.515	0.126
5	1	2	7.698	7.927	1.622	56.704	0.126
1	2	5	4.677	7.049	1.615	56.983	0.127
4	0	4	126.443	127.813	1.607	57.290	0.127
4	3	1	74.722	72.219	1.599	57.583	0.128
3	0	5	59.182	48.424	1.572	58.668	0.129
5	2	1	7.551	23.728	1.572	58.678	0.129
2	4	2	90.950	90.616	1.554	59.447	0.130
5	0	3	55.571	59.875	1.546	59.781	0.130
0	0	б	48.231	39.979	1.543	59.887	0.130
1	4	3	27.895	21.388	1.516	61.067	0.132
3	4	1	32.392	25.266	1.504	61.612	0.133
6	0	0	9.680	17.489	1.488	62.345	0.134
1	1	б	27.386	16.491	1.487	62.401	0.134
4	2	4	2.503	19.454	1.464	63.500	0.135
2	0	б	64.600	65.785	1.459	63.758	0.136
0	3	5	45.795	62.260	1.458	63.766	0.136
3	3	4	27.152	29.158	1.446	64.364	0.137
6	1	1	49.722	67.075	1.439	64.738	0.137
3	2	5	23.380	45.004	1.438	64.798	0.137
4	3	3	48.409	33.140	1.437	64.828	0.137
5	2	3	25.242	26.645	1.417	65.851	0.139
6	0	2	80.428	60.625	1.417	65.872	0.139
0	2	6	95.456	105.997	1.415	65.951	0.139
0	4	4	55.736	38.892	1.408	66.311	0.140
0	5	1	54.393	77.634	1.403	66.580	0.140
4	1	5	57.122	63.258	1.397	66.905	0.141
4	4	0	59.142	51.919	1.389	67.351	0.141
5	Ţ	4	6.433	33.012	1.387	67.488	0.142
2	3	5	72.027	49.706	1.386	67.511	0.142
6	2	0	92.202	93.098	1.372	68.287	0.143
3	4	3	39.857	48.161	1.367	68.611	0.143
5	3	2	2.777	16.371	1.362	68.864	0.144
2	2	6	17.960	16.394	1.349	69.636	0.145
3	1	6	8.360	12.502	1.345	69.867	0.146
1	4	4	35.908	30.050	1.343	69.987	0.140
1 2	5 F	∠ 1	1.854	10.214 56 612	1 220	70.058	0.146
∠ ∧	C A	1 2	4/.UDD	20.013 25 622	1 221	10.249 70 710	0.140
4 6	+ 1	⊿ 2	24.429 55 510	∠3.033 27 020	1 217	/U./48 71 577	0.140
o c	ר ⊥	3 7	22.34Z	∠/.U∠U 01 E00	1 31 <i>6</i>	11.3// 71 661	0.149
1	⊿ ∩	⊿ 7	20.101 24 115	20 007	1 200	71.004 72 120	0.149
∩ ⊥	1	י ר	47.113 73 667	59.00/	1 200	72.120 72 610	0.150
し	ים וב יים וב	/ ' f ~	13.00/		1.300 07580	12.049	0.131
Fin	al Rr	노러 (무)	factor	- 0.20	81771		
	~+ 1/2	· (±·)	LUCCOL	0.13			

End of this test

References.

- i M. Feike, D. E. Demco, R. Graf, J. Gottwald, S. Hafner, H. W. Spiess, J. Magn. Reson., 1996, 122, 214.
- ii D. States, R. Haberkorn, D. Ruben, J. Magn. Reson., 1982, 48, 286.
- iii B. M. Fung, A. K. Khitrin, K. Ermolaev, J. Magn. Reson., 2000, 142, 97.
- iv D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J. O. Durand, B. Bujoli,
- Z. Gan, G. Hoatson, Magn. Reson. Chem., 2002, 40, 70.
- v W. Kohn, L. Sham, J. Phys. Rev., 1965, 140, 1133.
- vi M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C.
- Payne, J. Phys.: Condens. Matter, 2002, 14, 2717.
- vii S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, *Z. Kristallogr.*, 2005, **220**, 567.
- viii H. J. Monkhorst, J. D. Pack, Phys. Rev. B, 1976, 13, 5188.
- ix J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- x C. J. Pickard, F. Mauri, Phys. Rev. B, 2001, 63, 245101.