Thermal Phase Transformation of In₂Se₃ Nanowires studied by in-situ Synchrotron Radiation X-ray Diffraction

Yang Li, ^a Jing Gao, ^a Qingliang Li, ^a Mingfa Peng, ^a Xuhui Sun, ^a, *Youyong Li, ^a, *Gang Yuan, ^b Wen Wen, ^b and M. Meyyappan^c

^c NASA Ames Research Center, Moffett Field, CA 94035, USA ,and Division of IT Convergence Engineering, Pohang University of Science and Technology, Pohang, S. Korea.

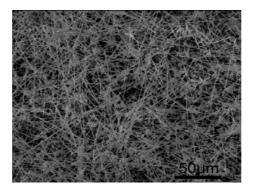


Figure S1. A representative SEM image of In₂Se₃ nanowires after *in-situ* SR-XRD measurement cooling down from 800°C.

^a Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon Based Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China. E-mail: xhsun@suda.edu.cn,yyli@suda.edu.cn

^b Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, P. R. China, 201204