Electronic Supplementary Information

Pore size control and organocatalytic properties of nanostructured silica hybrid materials containing amino and ammonium groups

Samir El Hankari, Blanca Motos-Pérez, Peter Hesemann,* Ahmed Bouhaouss and Joël J.E. Moreau

> Institut Charles Gerhardt de Montpellier, 8 rue de l'Ecole Normale, 34296 Montpellier cedex 05, France e-mail: peter.hesemann@enscm.fr phone: +33-(0)4.67.14.72.17 fax: +33-(0)4.67.14.43.53

Summary

Photos1-6: SEM-image of materials A16A18, 1/5 and 1/10	3
Figure 1: Nitrogen adsorption-desorption isotherms of materials A12, A14, 1/5, 1/20 and 1/40.	4
Figure 2: Pore-pore distance in the materials <i>vs.</i> molar mesitylene/precursor 1 ratio in the hydrolysis condensation mixture	4
Figure 3: ²⁹ Si CP-MAS solid state NMR spectrum of material A16A18 after 5 successive Henry reaction cycles	5
Figure 4: ¹³ C CP-MAS solid state NMR spectrum of material A16A18 after 5 successive Henry reaction cycles	5
Figure 5: ²⁹ Si CP-MAS solid state NMR spectrum of material A16A18 after 4 successive ring opening reaction cycles	6
<i>Figure 6: ¹³C CP-MAS solid state NMR spectrum of material A16A18</i> after 4 successive ring opening reaction cycles	6
Figure 7: ²⁹ Si CP-MAS solid state NMR spectrum of material A16A18-p after 4 successive ring opening reaction cycles	7
Figure 8: ¹³ C CP-MAS solid state NMR spectrum of material A16A18 -p after 4 successive ring opening reaction cycles	7
Figure 9: X-ray diffractogram of material A16A18 after 5 successive ring opening reaction cycles	8
Figure 10: X-ray diffractogram of material A16A18-p after 4 successive ring opening reaction cycles	8
Table 1: Elemental analysis of material A16A18-p before and after use in ring opening reaction	8
Figure 11: Nitrogen adsorption-desorption isotherms of material A16A18-p before and after four reaction cycles in ring opening reaction of glycidol	9

Material A16A18

Material 1/5

Material 1/10

Photos1-6: SEM-image of materials A16A18, 1/5 and 1/10

Figure 1: Nitrogen adsorption-desorption isotherms of materials A12, A14, 1/5, 1/20 and 1/40.

Figure 2: Pore-pore distance in the materials *vs.* molar mesitylene/precursor 1 ratio in the hydrolysis condensation mixture

Figure 3: ²⁹Si CP-MAS solid state NMR spectrum of material **A16A18** after 5 successive Henry reaction cycles

Figure 4:¹³C CP-MAS solid state NMR spectrum of material **A16A18** after 5 successive Henry reaction cycles

Solid state NMR spectra of the materials after use in ring opening reaction of glycidol with lauric acid

Figure 5: ²⁹Si CP-MAS solid state NMR spectrum of material **A16A18** after 5 successive ring opening reaction cycles.

Figure 6: ¹³C CP-MAS solid state NMR spectrum of material **A16A18** after 5 successive ring opening reaction cycles

Figure 7: ²⁹Si CP-MAS solid state NMR spectrum of material **A16A18-p** after 5 successive ring opening reaction cycles

Figure 8: ¹³C CP-MAS solid state NMR spectrum of material **A16A18-p** after 5 successive ring opening reaction cycles

Figure 9: X-ray diffractogram of material **A16A18** after 5 successive ring opening reaction cycles

Figure 10: X-ray diffractogram of material **A16A18-p** after 5 successive ring opening reaction cycles

Table 1: Elemental analysis of material A16A18-p before and after use in ring opening reaction

	С	Н	Ν
A16A18-p before catalysis	31.06	6.48	3.81
A16A18-p after catalysis	36.26	10.49	2.01

Figure 11: Nitrogen adsorption-desorption isotherms of material A16A18-p before and after four reaction cycles in ring opening reaction of glycidol