Highly Exposed and Activity Modulated Sandwich Type Pt Thin Layer Catalyst with Enhanced Utilization

Beena K Balan and Sreekumar Kurungot *

Physical and Materials Chemistry Division, National Chemical Laboratory, Pune, India

411008.

E-Mail: k.sreekumar@ncl.res.in; Fax: +91 20 25902636 Tel: +91 20 25902566

Supporting Information:

Results

Figure S1: HRTEM images of high aspect ratio carbon nanofibers, (a) low magnification image showing the length of nanofibers in few micrometers and diameter ca. 100 nm. (b) high magnification image showing the inactive outer wall and active terminal grapheme edges in the inner cavity, image in the inset shows the open tips of the carbon nanofibers

Figure S1 shows the HRTEM images of pristine carbon nanofiber support at various magnifications. Fig S1 (a), the low magnification image shows that the length of CNFs is in few micrometers and diameter about 100 nm. The peculiar morphology characteristics of CNFs, which enables the complete access of inner cavity is clear from

the high magnification image given in (b). Here the active terminal edges in the inner cavity and the deposition of the thick carbon layer on the outer wall is clearly depicted. Further, the open tips of these CNFs are also clear from the image given in the inset o Figure S1 (b).

Figure S2: HRTEM images obtained for (a) F-Pt, (b) F-Pt₁Ru_{0.5} and (c) F-Pt₁Ru₂ HRTEM images of F-Pt, F-Pt₁Ru_{0.5} and F-Pt₁Ru₂ with their clearly marked interplanar spacing in the inset of the respective figures are shown in Figure S2 (a, b and c) respectively. For all the catalysts, the *d*-value obtained is ca. 0.22 nm which matches with the (111) plane of fcc Pt. The interplanar spacing corresponding to RuO₂ cannot be measured due to its amorphous nature. In F-Pt₁Ru_{0.5} and F-Pt₁Ru₂, the regions with lower contrast correspond to the exposed RuO₂. Fascinatingly, in F-Pt₁Ru₂, the lattice fringes corresponding to Pt are more resolved as compared to that in F-Pt₁Ru_{0.5}. This indicates the selective exposure of Pt towards the surface with increase in the Ru content in the bimetallic combinations.

Figure S3: Full survey X-ray photoelectron spectra obtained for F-Pt (cyan), F-Pt₁Ru_{0.5} (blue), F-Pt₁Ru₂ (green), F-Pt₁Ru₅ (red) and F-RuO₂ (black).

Table S1 compares the binding energy of C1s, Ru $3d_{5/2}$, Pt $4f_{7/2}$ and O1s levels after deconvolution of the XPS data shown in Figure S3. In all the catalysts, except F-Pt, the overlapped C 1s and Ru 3d core level regions after deconvolution gives five peaks, one corresponding to the graphitic carbon, two corresponding to the carbon attached to the oxygen containing functional groups and the remaining two corresponding to the Ru 3d core levels. The C 1s level of F-Pt gives three peaks after deconvolution corresponding to the graphitic carbon attached to functional groups. Ru, in all the catalysts is present exclusively in the form of RuO₂ and no metallic Ru is detected. Pt in F-Pt shows the presence of Pt(0) only whereas in all the bimetallic combinations Pt(0) and PtO are detected with a shift in binding energy. Oxygen is present in all the catalysts and on deconvolution it gives two peaks, one corresponding to the adsorbed oxygen and second corresponding to RuO₂. The absence of Pt in F-RuO₂, RuO₂ in F-Pt and chlorine in all

catalysts is also clear from the XPS analysis.

Table S1: Deconvoluted X-Ray Photoelectron Spectra shows electron binding energies of C1s, Ru 3d and 3p, Pt 4f and O1s core levels for F-Pt F-Pt₁Ru_{0.5}, F-Pt₁Ru₂, F-Pt₁Ru₅ and F-RuO₂.

Sample	Carbon	Ruthenium		Platinum	Oxygen
	1s			4f	1s
		3d	3p		
	284.5	-		71.1	
F-Pt	286.1			74.4	
	288.2				
	284.5	281.6	462.9	71.3	530.6
F-Pt ₁ Ru _{0.5}	286	284	486.3	74.6	532.7
	289.1		472.5	72.4	
				76.8	
	284.5	281.6	463.2	71.4	530.3
F-Pt ₁ Ru ₂	285.9	285	485.7	74.8	532.3
	289.3		472.5	72.6	
				76.7	
	284.4	281.2	462.9	71.2	530.4
F-Pt ₁ Ru ₅	286	284.1	485.5	74.5	532.4
	288		472.5	72.6	
				76.2	
	284.5	281.4	462.8		531.2
F-RuO ₂	286	283.5	485.4	-	533.2
	288.6				

Figure S4: EDX spectrum of (a) F-Pt, (b) F-Pt₁Ru_{0.5}, (c) F-Pt₁Ru₂ and (d) F-Pt₁Ru₅

As XPS is a surface sensitive technique, total loading on the carbon nanofiber support cannot be precisely determined using this tool. Therefore, energy dispersive Xray (EDX) analysis of the samples with various Pt:Ru ratios is carried out and accordingly Figure S4 (a)-(d) show the EDX spectrum of F-Pt, F-Pt₁Ru_{0.5}, F-Pt₁Ru₂ and F-Pt₁Ru₅. Table S2 summarises the EDX quantification report of these samples. In all the samples, carbon content remains almost same *ie*. 79-80 %. In F-Pt no traces of Ru is detected and the Pt content is 20 %. Almost negligible amount of oxygen (0.6%) is also detected in this sample. For F-Pt₁Ru_{0.5}, where the initial Pt:Ru ratio is 15:5, the EDX quantification gave the Pt:Ru ratio as 14.25:4.72. For the catalyst with the initial Pt:Ru weight ratio 10:10 (F-Pt₁Ru_{0.5}), the calculated ratio from EDX is 9.87:8.33. Finally, for F-Pt₁Ru₅, the EDX quantification gives the Pt:Ru ratio as 3.56:12.91. This is slightly less as compared to the initial Pt:Ru ratio of 5:15. The loading obtained for this catalyst from the TGA analysis is also slightly less than the initial loading and actually it displayed the lowest loading from the TGA analysis among all the catalysts. More fascinatingly, if we compare the oxygen contents in various bimetallic combinations, there is a progressive increase in the oxygen content with increase in the Ru content. This trend is also in complete agreement with the XPS results.

Sample	Carbon		Ruthenium		Platinum		Oxygen	
	Wt %	At %	Wt %	At %	Wt %	At %	Wt %	At %
F-Pt	79.02	97.85	00.00	00.00	20.33	01.55	00.65	00.60
F-Pt ₁ Ru _{0.5}	79.84	97.33	04.72	00.61	14.25	0.97	01.19	01.09
F-Pt ₁ Ru ₂	79.09	95.71	08.33	1.23	09.87	00.70	02.71	02.36
F-Pt ₁ Ru ₅	79.64	94.36	12.91	01.81	03.56	00.26	03.89	03.56

The total loading on the carbon nanofiber support is further confirmed using TGA also. Figure S4 shows the TGA profile of pristine CNF, F-Pt, F-Pt₁Ru_{0.5}, F-Pt₁Ru₂ and F-Pt₁Ru₅ in air from room temperature to 1000 °C. The catalysts show initially a small weight loss corresponding to residual water followed by a continuous weight loss of carbon up to 700 °C. From the residue content, the loading amount (both Pt and RuO₂) is calculated to be 19.8, 19.5, 19.2 and 18.6 wt % respectively for F-Pt, F-Pt₁Ru_{0.5}, F-Pt₁Ru₂ and F-Pt₁Ru₅. It can also be noted from the TGA profile that, in case of pristine carbon nanofiber, no detectable amount of metal is present. Further, Ru is present in the form of RuO₂ only because if Ru is present in the metallic form, in presence of air TGA profile will show a weight gain corresponding to the formation of RuO₂. This feature gives an interesting evidence for the conclusion that Ru exists exclusively as RuO₂ in the catalyst.

Figure S5: TGA profile obtained for pristine CNF, F-Pt, F-Pt₁Ru_{0.5}, F-Pt₁Ru₂ and F-Pt₁Ru₅ in air from room temperature to 1000 °C

Figure S6: Comparison of cyclic voltammograms of $F-Pt_1Ru_5$ (black) and $C-Pt_1Ru_5$ (red) in 0.5 M H₂SO₄ at the scan rate of 50 mV/s.

The cyclic voltammograms of $F-Pt_1Ru_5$ and $C-Pt_1Ru_5$ recorded in 0.5 M H₂SO₄ clearly confirm the role of oxygen containing functional groups in enhancing the utilization of Pt (Figure S4). $F-Pt_1Ru_5$ shows CV features similar to that of a polycrystalline Pt electrode with the characteristic H₂ adsorption-desorption and oxide formation-oxygen reduction peaks. On the other hand, the CV of C-Pt₁Ru₅ shows typical capacitive behaviour exactly similar to that reported for hydrous RuO₂. This transition from the characteristic oxygen reduction behaviour of Pt to the characteristic capacitive features of RuO₂ clearly indicates that Pt is selectively exposed in F-Pt₁Ru₅ due to the preferential adsorption of Ru ions by virtue of the surface functional groups created during the pre-treatment process whereas in the case of C-Pt₁Ru₅ most of the Pt is merged in the RuO₂ layer completing suppressing its activity. Of course F-RuO₂ also shows features similar to that of C-Pt₁Ru₅ as shown in Figure S5, further confirming the role of oxygen containing functional groups in the design of the new catalyst for improving the Pt utilization.

Figure S7: Cyclic voltammogram of F-RuO₂ in 0.5 M H₂SO₄ at the scan rate 50 mV/s.

The liner sweep voltammograms (LSV) obtained for F-Pt, F-Pt₁Ru_{0.5}, F-Pt₁Ru₂ and F-Pt₁Ru₅ for ORR in 0.5 M H₂SO₄ at a scan rate of 5mV/s are given in Figure S8 (a-d) respectively. The LSV is recorded at various rotation rates; 400, 900, 1200, 1600 and 2500 rpm. The limiting current is increased progressively with the rotating speed which is a characteristic feature of ORR. Normally, when the rotation speed increases, there will be an increase in the mass transfer rate of dissolved oxygen from bulk solution to the electrode surface and accordingly there will be an increase in the ORR activity with increase in the rotation rate.

Figure S8: Linear sweep voltammograms obtained for (a) F-Pt, (b) F-Pt₁Ru_{0.5}, (c) F-Pt₁Ru₂ and (d) F-Pt₁Ru₅ for ORR in 0.5 M H₂SO₄ with various rotating speeds at a scan rate of 5 mV/s.

Koutecky –Levich plots (K-L plots) *i.e.* a plot of the inverse current densities of ORR (j^{-1}) as a function of the inverse of the square root of rotating rate $(\omega^{-1/2})$ at various potentials are also presented. The overall current density (j) obtained will be the sum of

the kinetic current density (j_k) , diffusion-limited current density (j_d) , and the film diffusion-limited current density of Nafion® (j_f) . Since the amount of Nafion® is too low as compared to the total amount of the catalyst (for 10 mg of 20% catalyst we used 20 µl of 0.1 wt % Nafion®), j_f can be neglected. Thus, the overall measuring current density of ORR can be written as

$$\frac{1}{j} = \frac{1}{j_k} + \frac{1}{j_d} = \frac{1}{j_k} + \frac{1}{0.62nFAD_0^{2/3}C_0^* v^{-1/6} \omega^{1/2}}$$

where, 'n' is the electron transfer number, 'F' is the Faraday constant, 'D' is the diffusivity of O_2 in the electrolyte, ' C_0 ' is the O_2 concentration in the solution, 'v' is the kinematic viscosity and ' ω ' is the rotating rate of RDE.

Figure S9: A plot of the limiting current values obtained from the Koutecky-Levich plots against the corresponding potential values.