Electronic Supplemental Information for:

Hybrid Hexagonal Nanorods of Metal Nitride Clusterfullerene and Porphyrin Using a Supramolecular Approach

Ying Xu, Chenchen He, Fupin Liu, Mingzhi Jiao and Shangfeng Yang*

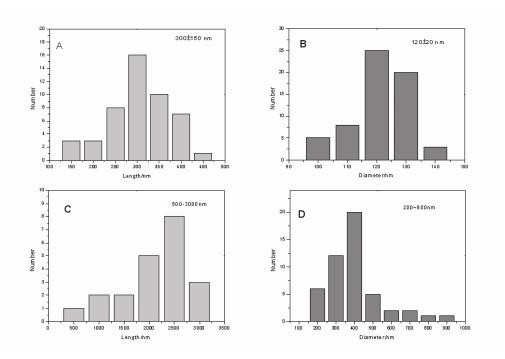
Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials

for Energy Conversion & Department of Materials Science and Engineering, University of Science

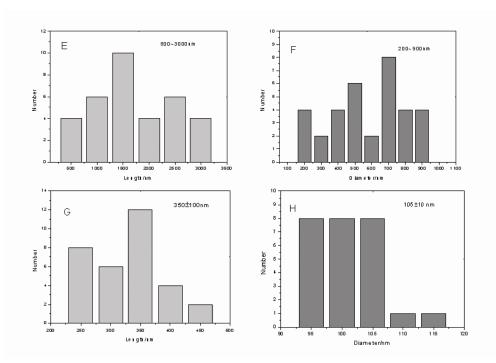
and Technology of China (USTC), Hefei 230026, China

Contents

- S1. Size distribution of samples 1, 2, 5, 6
- **S2**. SEM image of C₆₀-ZnTPyP nanorods


S3. TGA data of Sc₃N@C₈₀-ZnTPyP nanorods in comparison to those of Sc₃N@C₈₀ and ZnTPyP

S4. SEM images of Sc₃N@C₈₀-ZnTPyP nanorods before and after standing for five months

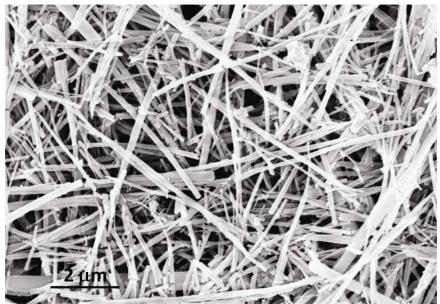
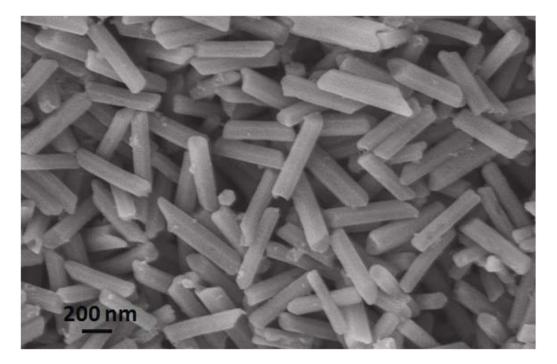

S5. Steady-state fluorescence spectra of $Sc_3N@C_{80}$ -ZnTPyP nanorods and ZnTPyP nanotubes in different solvents

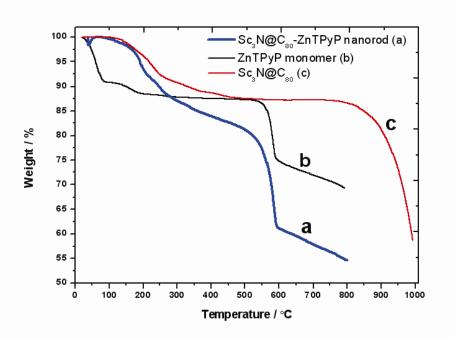
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2011

S1. Size distribution of samples 1, 2, 5, 6

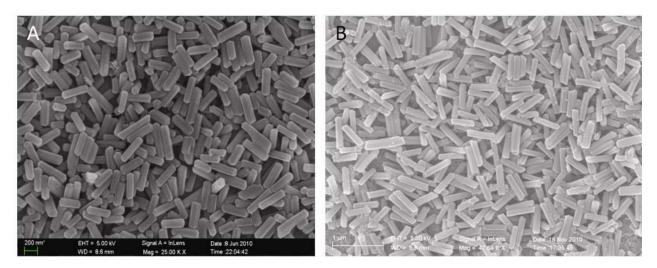
Figure S1. Length and diameter distributions of $Sc_3N@C_{80}$ -ZnTPyP nanorods (see Table 1). Sample 2: (A) length; (B) diameter; Sample 1: (C) length; (D) diameter.

Figure S2. Length and diameter distributions of ZnTPyP nanotubes (see Table 1). Sample **6**: (E) length; (F) diameter; Sample **5**: (G) length; (H) diameter.

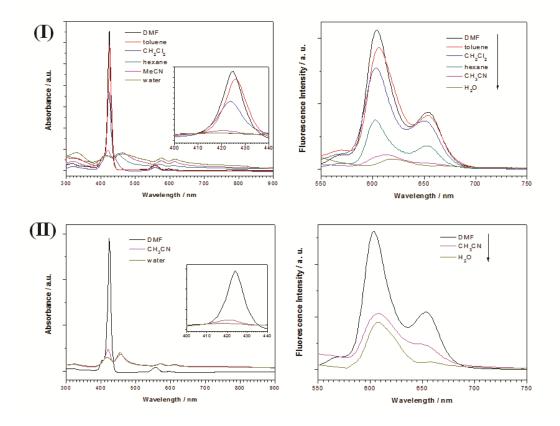




Figure S3. SEM image of $Sc_3N@C_{80}$ -ZnTPyP nanorods at a larger scale (sample 4, ZnTPyP: $Sc_3N@C_{80}$ =2:3).

S2. SEM image of C_{60} -ZnTPyP nanorods


Figure S4. SEM image of C₆₀-ZnTPyP nanorods (ZnTPyP:C₆₀=3:2, water was used as the solvent of CTAB solution, DMF/water=2/15 (v/v)).

S3. TGA data of $Sc_3N@C_{80}$ -ZnTPyP nanorods in comparison to those of $Sc_3N@C_{80}$ and ZnTPyP monomer


Figure S5. Thermal gravimetric analysis (TGA) curves of Sc₃N@C₈₀-ZnTPyP nanorods (sample 2) (a), ZnTPyP monomer (b) and Sc₃N@C₈₀ (c).

S4. SEM images of $Sc_3N@C_{80}$ -ZnTPyP nanorods before and after standing for five months

Figure S6. SEM images of $Sc_3N@C_{80}$ -ZnTPyP nanorods (sample 2) before and after standing for five months.

S5. Steady-state fluorescence spectra of $Sc_3N@C_{80}$ -ZnTPyP nanorods and ZnTPyP nanotubes in different solvents

Figure S7. (I) UV absorption (left) and steady-state fluorescence spectra (right) of $Sc_3N@C_{80}$ -ZnTPyP nanorods (sample 2) in DMF, toluene, CH_2Cl_2 , hexane, CH_3CN , and H_2O . Excitation wavelength: 410 nm. (II) UV absorption (left) and steady-state fluorescence spectra (right) of ZnTPyP nanotubes (sample 5) in DMF, CH_3CN and H_2O . Excitation wavelength: 410 nm. Sample concentrations were adjusted to keep the same optical absorbance at the excitation wavelength of 410 nm.