Supporting Information

Synthesis and Characteristics of a Novel, High-Nitrogen, Heat-Resistant, Insensitive Material (NOG₂Tz)

Zhanda Fu,[†] Cheng He[†], and Fu-Xue Chen[†]* **fuxue.chen@bit.edu.cn**

General	.51
7	.S2
8	.S2
X-ray structure of 7, 8.2DMSO	.S3
MOPAC calculation	.S5
Spectra of 7	.S7
Spectra of 8	.S8

General

¹H and ¹³C NMR spectra were recorded on a Bruker Advance 400 spectrometer at 400 and 100 MHz, respectively. Chemical shifts are reported in ppm relative to TMS. The solvent is [D₆]dimethyl sulphoxide (DMSO-*d*₆) unless otherwise specified. The melting, decomposition points and TG are recorded with the peak value on a METTLER TOLEDO differential scanning calorimeter at a scan rate of 10 °C min⁻¹. IR spectra were recorded on an IR-408 using KBr pellets. ESI-MS were recorded and analysed on an Aglient 500-MS, a Bruker Apex IV FTMS and a Bruker Compass Data Analysis 4.0. NOG and BT were prepared according to reported methods.¹ Other materials were purchased from Alfa Aesar.

Caution! When handling these energetic materials, small scale and good safety practices (leather gloves, face shield) are strongly encouraged.

Figure S1 High-nitrogen s-tetrazine derivatives for energetic material applications

3-methoxy-5-methoxy-1,2,4-oxadiazole (7)

NOG (344 mg, 2 mmol) was added to a solution of methanol (8 mL) and sodium methoxide (30% solution in methanol, 720 mg, 4 mmol). The mixture was stirred with an overhead stirrer at 70 °C, then BT (270 mg, 1 mmol) was added in portions over 3-5 min. The reaction was maintained at 70 °C for 2 h. The reaction was then poured into ice water (10 mL) and acidified by adding 3N HCl, until the pH was equal to 1. The pink-orange precipitate was filtered, washed thoroughly with water and air dried to give 7 (280 mg, 89.2%). $T_{dec.}$: 260 °C. ¹H NMR (400 MHz, DMSO- d_6): δ_H 7.01 (bs, 4H, NH₂), 3.83 (s, 3H, CH₃) ppm. ¹³C NMR (100 MHz DMSO- d_6): δ_C 56.2, 159.4, 172.4, 174.2 ppm. IR (KBr) v_{max} : 3439, 3367, 3192, 3121, 2957, 2759, 1670, 1645, 1586, 1562, 1524, 1465, 1385, 1282, 1100, 1005, 1003, 976, 771, 514 cm⁻¹. ESI-MS (157): *m/z* positive mode, 158[*M*+H]⁺; 180[*M*+23]⁺.

3,6-bi(3-nitro-1,2,4-oxadiazole-5-guanyl)-1,2,4,5-tetrazine (8)

NOG (860 mg, 5 mmol) was placed in an oven-dried, round-bottomed flask (50 mL) with a stirbar and dissolved in anhydrous dimethylformamide (20 mL). The solution was cooled to 0 °C and NaH (60% dispersion in oil, 280 mg, 7 mmol,) was added in portions over 5 min. The reaction was stirred for 30 min at 0 °C and BT (540 mg, 2 mmol) was added in one portion. The reaction was stirred at 0 °C for 1 h and then allowed to warm to room temperature and stirred for an additional 4 h. The reaction was then poured into ice water (20 mL) and acidified by the addition of 3 N HCl until the pH was equal to 1. The orange precipitate was filtered, washed thoroughly with water and dried to give **8** (800 mg, 94.7%). T_{dec} : 329 °C, ¹H NMR (400 MHz, DMSO- d_6): δ_H 12.36 (bs, NH), 9.27 (bs, 2H), 8.74(bs, 2H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): δ_C 155.8, 159.2, 169.0, 175.3 ppm. IR (KBr) v_{max} : 3365, 3264, 3216, 1633, 1568, 1538, 1477, 1405, 1386, 1302, 1052, 1026, 980, 955, 828, 787, 755, 695, 599 cm⁻¹. HRMS (421.0584): m/z negative mode, 421.05796 [M–H]⁻. The crystal density was calculated by a patented method.² X-ray analysis data of 7 and 8.2DMSO

Figure S1 Displacement ellipsoid plot (30%) and ball-and-stick packing diagram of 7.

Figure S2 Displacement ellipsoid plot (30%) (a) and ball-and-stick packing diagram (b) of 8 2DMSO

Table S1 Crystallographic data for 7 and 8 2DMSO

Compound	7	8·2DMSO
Empirical formula	C4H7N5O2	C12 H18 N16 O8 S2
Formula weight	157.15	578.09
Temperature	153(2) K	153(2) K
Wavelength	0.71073 Å	0.71073 Å
Crystal system, space	Monoclinic, P2(1)/c	Triclinic, P-1

group			
Unit cell dimensions	a= 7.129(3) Å	a=5.750(2) Å	
	α=90°	α=80.614(11) ^o	
	b= 13.514(5) Å	b=8.875(3) Å	
	$\beta = 91.715(5)^{\circ}$	β=80.732(10) [°]	
	c= 6.915(3) Å	c =15.739(6) Å	
	γ=90°	γ=81.456(10)°	
Volume	665.9(5) Å ³	775.9(5) Å ³	
Z, Calculated density	4, 1.567 g cm ⁻³	1, 1.573 g cm ⁻³	
Absorption	0.128 mm ⁻¹	0.383 mm ⁻¹	
coefficient			
F(000)	328	382	
Crystal size	$0.32 \times 0.28 \times 0.11 \text{ mm}$	$0.61\times0.21\times0.07~mm$	
Theta range for data	2.86° to 29.10°	2.34° to 29.09°	
collection			
Limiting indices	-7<=h<=9, -18<=k<=18,	-7<=h<=7, -10<=k<=12,	
	-9<=1<=9	-21<=1<=21	
Reflections	5660/1753 [R(int)= 0.0387]	8329/4037 [R(int)=0.0305]	
collected/unique			
Completeness to	98.2%	97.0%	
theta=27.48			
Absorption correction	None	Semi-empirical from	
		equivalents	
Refinement method	Full-matrix least-squares on	Full-matrix least-squares on F ²	
	F^2		
Data/restraints/param	1753/0/177	4037/19/279	
eters			
Goodness-of-fit on F ²	1.002	1.002	
Final R indices	$R_1 = 0.0492, wR_2 = 0.1355$	R ₁ =0.0511, wR ₂ =0.1117	

[I>2sigma(I)]		
R indices (all data)	R ₁ =0.0784, wR ₂ =0.1470	R ₁ =0.0858, wR ₂ =0.1271
Largest diff. peak and	0.287 and -0.235 e. $Å^{-3}$	0.595 and -0.346 e. $Å^{-3}$
hole		

Calculated total energy (E0), zero-point energy (ZPE), enthalpy of formation (HOF) of compound 8

Isodesmic reactions for compound 8

All the calculations are done at the semi-empirical level using the PM6 method³ implemented in the MOPAC package.⁴ The heat of formation is obtained at room temperature (298.15K) throughout the atomisation reaction.

1.	E ₀ /ev	ZPE/ev	HOF/(K

Table S2 Calculated heats of formation by MOPAC

Compd.	E ₀ /ev	ZPE/ev	HOF/(KJ
			mol^{-1})
NOG	-2367.64277	2.60549941449	235.07941
8	-5667.81698	5.60450188663	957.34882

References

- (a)Z. Fu, R. Su, Y. Wang, Y-F. Wang, W. Zeng, N. Xiao, Y. Wu, Z. Zhou, J. Chen and F-X. Chen, *Angew. Chem., Int. Ed.*, submitted, DOI: 10.1002/anie.201105870; (b) Y. Li, A. Asadi and D. M. Perrin, *J. Fluorine Chem.*, 2009, 130, 377-382
- 2. Y.-K. Wu, D.-Y. Chen, H.-S. Dong, Chinese Patent, 2011, CN101957300A.
- 3. J. J. P. Stewart, J. Mol. Modeling, 2007, 13, 1173-1213.
- MOPAC2009, J. J. P. Stewart, Stewart Computational Chemistry, Colorado Springs: CO, USA, <u>HTTP://OpenMOPAC.net</u> (2008).

Figure S3 ¹H NMR of 7

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is The Royal Society of Chemistry 2011

Figure S5 DSC of 7

Figure S8 ¹³C NMR of 8

Bruker Compass DataAnalysis 4.0	printed:	6/22/2011 3:41:29 PM	Page 1 of 1

Figure S9 HRMS of 8

Figure S11 TGA of 8